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FOREWORD

One of the major problems facing the decision makers and de-
signers of knowledge-based expert systems is to develop a meaningful
model of uncertainty associated with complex and difficult-tu-
understand subjective and objective real-world phenomena. Stimu-
lated by the research In artificial intelligence and related areas.
the field of knowledge-based expert systems blossomed in the mid-
1970's and has enjoyed more than a decade of vigorous growth.
Contributions to the growth have come from many theories of uncer-
tainty iiiciuaing Sayes' Statistics, Zadeh's Possibility Theory and
Belief Functions, etc., and have embodied many disciplines of
mathematics and engineering such as statistics, mathematical logic.
measure theory, communication theory, operations research, systems
theory, psychology, linguistics and computer science. Readers who
sample the literature in the field of knowledge-based systems will
soon appreciate the color and vigor that make up the discipline.

This diversity in model-making, though healthy in developing
phases, has posed some serious problems before the students, re-
searchers, as well as users of the models. No single volume on
model-making embraces all of these approaches.

This Research Monograph authored by Irwin R. Goodman and Hung
T. Nguyen is a first attempt to present a general framework for
the manipulation and explanation of uncertainty in the design of
knowledge-based expert systems. It provides mathematical foun-
dations and gives extension and applications of various theories of
uncertainty, including Bayes' Statistics, Zadeh's Possibility Theory
and Belief Functions.

Also, this monograph addresses topics such as knowledge re-
presentation, inference rules, and combination of evidence. The
general framework is based upon the theory of formal languages and
semantic evaluations from different systems of mathematical logic.
The underlying processes of reasoning lead to decision analyses in
various contexts of knowledge-based system theory. A general dis-
cussion is presented on topics such as generalized set theory from a
viewpoint of multi-valued logic and its connection with Category
Theory. In presenting these topics, the authors do an impressive
job in introducing some basic concepts which provide a rigorous
foundation for uncertainty analysis. This monograph also gives a
survey of the state-of-the-art of research in the areas of fuzzy
sets and Zadeh's Possibility Theory.

The authors' exposition in this present monograph is an out-
growth of their research involvement in the field over the last
decade. Naturally, this serves to present a unified approach to
uncertainty models and its applications in areas such as medical
diagnosis, fault analysis, geological prospecting and other disci-
plines of expert systems and decision analysis. The authors deserve
to be complimented for presenting such a coherent account of such a
diversified field. It is a seminal work. This is a first major
contribution which gives both theory and applications of uncertainty
models and poses many open research problems and unresolved issues
which may be of great interest to our future researchers.

Madan M. Gupta
University of Saskatchewan
Saskatoon
October, 1984
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PREFACE

This monograph is an attempt at presenting a unified treatment
of uncertainty modeling which has been developed by many researchers
over the past two decades. Uncertainty modeling has been widely
used in systems analysis, as , e.g., in expert systems treating med-
ical diagnoses, fault determinations and geological prospecting.

The general inferential problem can be described as follows:
Consider some real-world system of interest such as the disease
condition of a given patient, the possible areas where oil may be
found, and the relationships of reported targets in a military sce-
nario. By a system, in general, we mean a collection of possible
real-world situations or "states". A process is a system where the
collection of possible states may also depend on time or other in-
dices. Associated with any system is a collection of attributes
used to describe the system. These attributes could be, e.g., posi-
tion, temperature, sea state, blood pressure, degree of comfort,
degree of happiness or any other description, linguistic or numer-
ical, that could be applied to a system. At a given time t , often
it is not known which state or states of a system are present. This
is called the uncertainty of the system at time t . This leads to
the establishment of an experiment in order to gather data or evi-
dence concerning which states of the system are present at time t
and to what degree. The design of the experiment will of course
depend on the type of system considered. Thus, a medical situation
requires asking a patient questions resulting in some linguistic
(or natural language) data, while the problem of investigating the
safety level of F. particular street corner typically involves a
statistical experiment with numerical data. The outcomes of the ex-
periment may be sorted according to possible attributes associated
with the system. Each attribute has a donain of possible values(numerical or linguistic, etc., and possibly time dependent) some of
which are observed as data. Thus, in the medical situation mentioned
above, some attributes could be: Patient's degree of comfort which
could include the possible domain of outcomes "feeling badly,"
"can't breathe," "feel tired and thirsty," and temperature, which
could range from 90 to 100 degrees fahrenheit. On the other hand,
for the safety level problem, typical attributes might include: The
number of accidents at that corner over a three year period, with
domain being integer-valued and the traffic flow rate described by
the number of vehicles passing the area per unit time.

Two types of uncertainties arise: The first involves only
uncertainties in che outcomes of the experiment, the second in-
volves, in addition, uncertainties in the meaning of the data.
Examples of the first situation occur in any well-defined random
experiment such as tossing a coin, observing queues, and recording
observed signals. Examples of the second type include experiments
involving linguistic outcomes, where for information processing
purposes, it is necessary to exercise greater care in the modeling
of meaning representation.

Depending on the nature of uncertainties present in a system
and the data, different types of uncertainty models are appropriate.
An uncertainty model may consist of a class of chosen measures or
distributions together with a logical system or calculus of opera-
tors on these measures. On the other hand, uncertainty models may
be completely heuristic, reflecting, e.g., the common knowledge of a
group of individuals or "experts". Ideally, uncertainty model.s can

I
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be both rigorous and heuristic in the sense that the mathematical
aspect of the model contains all necessary expert knowledge appro-
pritey -ncoded. Three well-known examples of uncertainty models
are the probabilistic model, Zadeh's possibilistic model, and the
inexact reasoning model in medicine using &-rtainty factors, as
developed by Shortliffe, Buchanan and others.

Recently, expert systems have come to the forefront in the
modeling of problems. The most important problems in designing
expert systems are those of knowledge representation and combination
of evidence. These problems are of a semantic/mathematical nature
due to the subjective character of natural language. Zadeh's pos-
sibilistic model (also called PRUF) and related generalizations are
attempts to deal with these important issues. Once a class of un-
certainty measures has been chosen for analyzing a system at hand,
the reasoning process can be implemented within an appropriate cal-
culus.

Our general approach is through the concept of a "dispersion"
or generalized set membership function. By a dispersion, we mean a
distribution in the general sense, not just the probabilistic inter-
pretation, nor necessarily the possibilistic meaning, i.e., fuzzy
set membership function or possibility distribution. A dispersion
PA of an attribute A having domain D(A) is usually defined as a

mapping PA : X - [0,i] , where X 2 D(A) is some (base) space

representing the universe of all possible elements (or objects or
values) of interest relative to A which may be in numerical,
linguistic or other forms. Then each element x E X is assigned
the value A ::) representing the degree of truth or uncertainty

associated with x with respect to possessing attribute A or
being "in" A considered as a general (or fuzzy) subset of X .

One example of a dispersion is derived from probability theory
where (a, A, Pr) is a probability space. In this case, X = A

(not Q !) , A is an attribute whose domain of values D(A) con-
sists of the subsets of a constituting the a-algebra A such that

= Pr Note that the sum of (A over A in general exceeds

unity or is divergent. (Of course, the sum of A restricted to

any disjoint collection of sets from A will not exceed unity,
compatible with the usual requirement of Pr being a probability
measure.) Another example is furnished by the attribute "tall" with
X representing the range of heights of men in feet. Then (A is

non-decreasing.
Sometimes dispersions may represent more general concepts of

distributions with values lying in a lattice or a Heyting algebra,
or dispersions may be understood in the sense of Manes as used in
his "fuzzy theories". The modeling of uncertainty will be carried
out within a rigorous framework called a general logical system.

By a general logical system we usually mean: (I) a triple of
logical operators (C, x, t) representing the connectives "not",
"dnd", "or", and (ii) a dispersion mapping T : Set -+ Set , where
Set is a collection of sets of interest and for any X in Set ,
T(X) is a class of dispersions over X . In practice, due to the
complexity of the problem considered, a hybrid logical system
consisting of a collection of logical operators may be more appro-
priate. A logical system may or may not be truth-functional, i.e.,
the operators may or may not be in functional composition form with
respect to dispersions. For example, a generalized set system
(extending Zadeh's fuzzy set theory) consists of the triple of oper-
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ators Pnot ' 'and ' Tor , with (not : C0,] ' C0,1] a negation,

P& and 0,or - [0,1] being a t-norm and a t-conorm, respec-

tively, with T : Set -+ Set , usually chosen so that Set is some
subcollection of well-formed sets and for any set X , T(X) = T(X) ,
the class of all attrib.tes A (or fuzzy subsets) of X . Each A
may be identified with its membership function PA : X - [0,I] and

more generally !(X) may be identified with [0,1] For this
system, x and t are defined by:

AxB(x'y) = &(PA(X), B(Y))

VAtB(X,y) = Oor(PA(X) 0 B(Y))

for all A E l(X) , B e l(Y) , x E X , y e Y and X , Y arbitrary
sets.

Thus, the above important system which extends classical two-
valued logic is a truth-functional one. On the other hand, consider
the following system:

Let Set = (% ) 1

(% ) 1= [Apr I ' R, %,' Pr) is any probability space) (

where s is the Borel o-algebra of R and where @A Pr Let

(P. be any infinite copula. (This condition is equivalent to forc-

ing the generator of the canonical representation of & to be any
fixed completely monotone function.) Let Oor be a modular (or

equivalently a valuation or Frankian) cocopula with respect to

i.e., or(x,y) = x + y - a(xy) . Now let Apt ... ,A Pr 6 T(%
l n

n 2 , be arbitrary. Also, let a e R be arbitrary and define
Ia= ,(-a) E %l and denote F (a) = Prj((Ia)) , j = i,...,n

For these Apr ... A P e -1 ) and a1 ..., a e R , by1o hsepnn

Sklar's theorem we have (see also sections 2.3.6 and 2.3.9):

Fa ... n(al ... an) n a(E 1 ~ai )....Fn(an))

=Pr, Ii = ,(Prl(Ia ),...,Pr(Ia))

which yields F 1  n a joint probability distribution function

for marginals F. Fn , determining uniquely joint probability

measure Pr for probability space

n n(R, n
, Pr. . n )  In particular, note that we may rewrite

I



(PA Pr . (I , . ) = F1 ,..., (a .... an)

&(A P r I(I ),. ''P Pr a n))

1 Prn

which is a truth-functional form for the system relative to all
"points" Ia E %1, j = 1,...,n . If a = prod (ordinary product),

the above equation may be extended to arbitrary "points"
C e %1, j = 1 . . n , and thus the logical system remains truth-

functional. However, in general, if (P A prod , there are many

C. %E1 , j = 1...n ,such that

PA Pr (C1 ,...Cn) * &(A Pr1(C 1 )..APr (Cn))
Pr P..nr

i.e.,

Pr1 ... .. 'XCn n 'Pr1 (C1 ),...,Prn(Cn))

because of the additivity constraint of probability measures.
Indeed, for n = 2 , let C 2 = CC1 , for C1 e %1 such that

Pr1 ,2 (C1 x C1 ) = Pr1 2 (C2 x C2 )

Pr1 2 (C2 x C1) Pr, 2 (C1 x C2 ) =. - Pr1 2 (C1 x C1 )

Thus, Pr1 (C1 ) Pr2 (C1 ) = PrI(C 2) = Pr2 (C2) =
1 1 2 1 1 2C 2 2I ri 2C

Yet, Pr1 2 (C1 X C2 ) = 1 Pr (C X C Pr (C X C1 )

Thus, Pr1 ,2(C1 x C 2) is not a function of PrI(C1 ) I Pr 2 (C2) for

all C1,C 2 e % Again, by use of Sklar's theorem, it can be show,-

that all joint probability measures are obtainable through use of
some copula.

Associated with any general logical system is a class of propo-
sitions many of which are of the form <x is in A> for any x X
and any attribute A with domain dom(A) 9 X , any set of interest.
In addition, a class of compound propositions may be constructed as
strings of propositions employing the qsic connectives. Moreover,
both conditional and quantified propositions may be defined.

All or the above may be considered as semantic or truth evalu-
ations of appropriate generalized set membership predicates within a
formal language.

Models of uncertainty can be used, in turn, in designing rule-
based systems, leading to decision procedures such as estimation,
hypotheses testing or confiQence region construction.

The book deals with mathematical foundations, applications and
extensions of previous attempts in treating uncertainty for know-
ledge representation, relating these whenever possible to semantic
evaluations of well-formed formulas in the form of set membership
relations, within a formal language structurc. These approaches
include: Classical objective and subjective probability theory;
Zadeh's concepts of fuzziness and possibility and its generalizz-



tions; Dempster and Shafer's upper and lower probabilities and
belief, doubt and other uncertainty reasures; and other schools of

thought such as Gaines' uncertainty l.ogic and Watanabe's system, as
well as various compound systems and briefly, other approaches such
as Shackle's surprise theory and Cohen's inductive probabilities.
Applications investigated include !iatural lnguage symbolizations,
semantic conten,. evAluations and some specific rule-based type
systems, including the target association problem.

Although many researchers have contributed to various aspects
of uncertainty m.-deling (Zadeh, Manes, 3aines, Watanabe, Fu among
others), little Ptention has been paid to developing a unified
treatment which directly relates probability concepts with other
uncertainty ideas. One of our main tools in presenting a unified
approach in this monograph is random set theory 'as developed ori-
ginally by Kendall and Matleron). We are concerned here with the
application of random set theory to uncertairty modeling rather than
further deve>-pment of random set theory by itself (an extensive
area in it- .- "ight where much -esearch remains to be done.).
However the -_ctions established between the two areas could be
useful in random set theory proper, such as the systematic study of
coverage functions.

The book is designed to be primarily a reference book which can
be utilized by both applied mathematicians interested in the foun-
dations and connections between modern approacLes to modeling of
imprecise information, as well as by systems engineers and others
interusted in studying expert systems.

Lastly, apropos to the title, this monograph emphasiz-- the
development and analysis of uncertainty models to be used in know-
ledge-based systems and other appropriate structures. Relatively
little is presented here concerning the general theory -f knowledge-
based systems, the area being treated more appropriately within
Cognition and Artificial Intelligence proper. (Gregg [98'] and Barr
and Feigenbaum C12'] present good introductions to the subject and
in Chapters 8 and 9 and section 2.3.5 some aspects of know.,dge-
based systems are considered.)
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PROLOGUE

I Although this monograph is concerned with various types of
multi-valued logical systems, as usual, all descriptions of those
systems and their proofs, i.e., the meta-level of this book, are
in terms of ordinary two-valued logic and set theory. This is
consistent with the philosophy that on one hand describes both
subjective and objective real-world phenomena (and related models)
within a multiple-truth-valued context, yet, at the same time, in
order to prevent a possible infinite regress of nested multi-truth
evaluations, the meta-level of description must be classical.
Perhaps someday (the authors are unaware of any work in this direc-
tion), serious textbooks will be published which might typically
include: "Pr(Theorem A) = 0.3" or "Pr(Pr(Theorem A) > x) = q(x) I
for most x in B" , with all "proofs" developed through multi-
valued or multi-multi-valued logic. However, until that time
arrives, we must be content with this apparent paradoxical situ-
ation. As researchers in probability theory, information theory,
possibility theory and multi-valued logical systems in general, we
all seem to be collectively stating, to paraphrase the well-known
adage: "Don't do as I do, do as I say!"

I
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CHAPTER 1

INTRODUCTION

1.1 Motivation and basic framework of analysis.

Many problems of common concern involve the gathering and pro-
cessing of both statistical and linguistic-based information. For
example, the outcome of a jury trial or police investigation may
well hinge upon both expert witness testimony, and, to a lesser
degree, upon other sources. In deciding the culpability of Oswald
in the assassination attempt upon General Walker, an expert ballis-
tics analysis group indicated "could have come, and even perhaps a
little stronger, to say that it probably came from this ... (gun]",
while the FBI investigating team, as a matter of policy, avoiding
the category of "probable" identification, refused to come to a
conclusion [256]. Other corroborative evidence included a written
note, also requiring an expert verification of authenticity, and
verbal testimony of witnesses. Based upon this combination of evi-
dence, the Warren Commission concluded that the suspect was guilty.

The process involved in the above situation could be analyzed
as involving:

(1) Observed data.
This included markings on recovered bullets from the

assassination attempt and laboratory-fired ones from
plausible gun sources and handwriting from the note and
previously established characteristics of the suspect's
handwriting.

(2) Error distributions or trends of occurances.
This was indicated by the reliability of the data

in representing what was observed. Factors that had
to be accounted for, included: quality of the note
paper, bullet distortions, and reliability of witnesses.

(3) Inference rules which reflect the legal expertise and ex-
perience of the Commission in relating the matching of
evidence with conclusions concerning final culpability.

Another problem of importance involving combination of evidence
occurs in tracking and "correlation", i.e., data association of
targets: Two target histories of interest are being considered by a
sensor operator for possible correlation. He receives information
labelled as A, B, C :

A: Two dimensional position observations with associated up-
dated error ellipses of some prescribed confidence level.

B: Reports concerning tentative classification of targets,
such as Filipino type Q4 or Liechtensteinian type R7.9.

|1



2 Goodman and Nguyen

C: Visual sightings, including partial identifications, clues,
hull lengths, mast shapes, etc.

Clearly, if information categories B and C are ignored,
statistical hypotheses testing theory may be applied to A to es-
tablish a standard weighted metric (Mahalanobis distance, see, e.g.,
Rao [212], Chapter 8) for testing for correlation and determining
the level of correlation (statistically) between the two track his-
tories of interest. Rough gating procedures could then be added to
see if B and C confirm or perhaps contradict the crucial geolo-
cation criterion results for A . (See, e.g., Goodman, et al. [87],
Bar-Shalom [12], Reid [213] and Bowman [23] for descriptions of
tracking/correlation systems utilizing the related procedures.)
But, how should gates or their softer distributional analogues be
systematically established for B and C and integrated with the
results for A ? Furthermore, can we use human in-field operator
experience to relate in some way information matches, mismatches,
and everything in between, occurring for categories B , C and A ,
as well, for correlation? This problem will be treated in detail
in Chapter 9. Certain aspects of this problem have been previous-
ly addressed through the establishment of the PACT (Possibilistic
Approach to Correlation and Tracking) algorithm (see [80], [82),
[83], [86]). In the above example, the parameter of interest is the
true correlation level. The above example motivates us to formulate
the following scheme for dealing with parameter estimation problems.
We need to:

(1) Categorize the incoming information into subcategories as
A, B, C ..... These categories should bo carefully chosen for non-
redundancy, if possible. Further analysis of taxonomy should prove
useful (for general procedures, see, e.g., Jardine and Sibson [124']
or for specialization to social or psychological context, see
Nowakowska [195']).

(2) Establish a rigorous and systematic framework for quan-
tifying information. This may be identified with the problem of
determining the natural domains of attributes A, B, C, ..... For
example, in the above example, A's domain consists of all ordered
pairs of 2 by 1 vectors and ellipses, while for B, perhaps
simplified labels such as Q4, R7.9, S6, ... will do.

(3) Derive matching level tables or equivalently error
"distributions" (in a sense possibly extending the classical sta-
tistical ones) that can occur between what is reported, observed or
predicted, depending on the context, and what the true values are
for each attribute category.

(4) Determine relative weights of importance between the var-
ious attribute categories. For example, how much will we tolerate a
total mismatch with respect to B , when a relatively good match oc-
curs relative to A ? This weighting problem, to a certain extent,
is addressed implicitly through the establishment of inference rules
as discussed below.

(5) Establish logical connections - based on either physical
considerations or huran operator experience - between the various
information categories. The connections could be either in the form
of inference/modus ponens rules or posterior distributions con-
straining or delineating the unknown parameter of interest. (See

em



Introduction 3

Goodman [82], [86] for earlier approaches to parameter estimation
when some of the informational input is in a linguistic format.)

More generally, we might ask: How do we model uncertainty and
conclusions concerning this within a general framework?

Obviously, once we remove ourselves from "hard" statistical
information, subjectivity and personal interpretive variation play
important roles. The logical connections mentioned in item (5)
above are usually given in the form of modus ponens inference rules
or posterior distributions. In the latter case, at least for the
classical statistical situation, Bayes' theorem is usually invoked
with respect to more basic conditional data and prior distributions.
For the former case, predicates restricting or describing thE
unknown parameter of interest and other parameters or values de-
termined through various attribute categories are related through an
"if ( ) then ( ) " structure. Schematically, we have the restric-
tions on unknown parameter Q , say:

4(QIZ) for "If P(Z) then V(Q)

The left hand side represents the posterior distribution (possi-
tiiistic or ordinary, see Zadeh [281] for clarification and
ex:planation of possibilistic distributions) of Q given data Z I
while the right hand side represents the inference rule "If P(Z)
is true, then V(Q) must also hold," where P(Z) is some pre-
dicate describing Z and V(Q) is some predicate describing Q

For example, let Z = (Z(i), Z ) , with Z (Z1 ) , z i)) and

Z (J = (Z j ) , Z j )  
, the superscript i referring to data for

1 2
track history i and j for track history j , and the subscript
1 referring to attribute category A and 2 referring to attri-
bute B . Then, we may let, for example,

P(Z) = " i
- and j ) very mildly (or to a low level) match

1 1

and Z(i) and z j) strongly match".
22

V(Q) = "correlation level Q is high at least".

The words "very mildly", "strongly", "high at least" could, if
sufficient information were present, be replaced by more quanti-
tative values such as a1 , a 2 , a3 , where each a k  is some number

between 0 and I indicating the intensity of matching level.
(Again, see, e.g., [80] or Chapter 9 for clarification and elabo-
ration of this idea.) It should be noted that many posterior
distributions and/or inference rules may be present which restrict
the possible values of Q given Z .

With the problem modeled according to the above mentioned
scheme, the next basic question concerns the actual mathematization
or translation of the problem into symbols which can be manipulated
according to some established calculus. How do we translate the
problem into a consistent rigorous framework? What means do we use
to translate the atomic or fundamental information parts? How are
compound informational parts to be exhibited through appropriate
choice of operators? Which parts of the problem are more amenable
to ordinary statistical/probabilistic analysis and modeling, and

I
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which parts to possibilistic modeling? Certainly, natural language
descriptions appear more easily put into possibilistic structure
than classical probabilistic ones. (See Dubois and Prade [51] for a
survey.) On the other hand, even concepts that may appear statis-
tically describable may also be modeled via a dispersion theory.
For example, classification often entails rather overlapping pos-
sible values or classes, based on various contributing factors. In-
deed, some classes may actually be subsets of others. In addition,
it is possible that the exact definitions of the classes themselves
are vague, and moreover, the relations between the classes may not
be clear. For example, B could contain E and F , which are
defined by knowledge of frequencies, ship size, shape, and number of
emitting energy sources on-board. Overlaps between E and F may
abound. Thus, it is not appropriate to consider ordinary probabil-
ity distributions over B since the elementary events E and F ,
among others for example, are not distinct or disjoint. Rather,
because of the overlapping flavor of B , either random sets of B
or, more generally, certain equivalent classes of random subsets of
B should be used. (Equivalence, as used here, is in the sense of
having the same one point coverage function, see Chapter 5.)

Analysis of uncertainty in its most general form requires
modeling and measuring imprecise concepts expressed by natural lan-
guage. By natural language we mean that medium through which all
human ideas are formed, including classical set theory and two-
valued logic, as well as more ambiguous concepts, such as proba-
bility distributions representing measurements, and the still more
ambiguous terms occurring in ordinary speech descriptions such as
"tall", "happy", "within 3 units of", "close to", "almost all",
"there exists", "approximately a subset of K to degree 0.6",
"member of set G", "approximately a member of H to degree 0.4".

The difficulty in using natural language modeling as a direct
tool for analysis is emphasized by the lack of organization of the
Bloomfield, Jespersen, Boas, Whorf (establishing the famous Whorf-

Sapir Hypothesis on language restricting the thoughts of native
speakers), and the later work of formal linguists Hiz, Harris, and
Chomsky, among others (see [35], [107]), what is evident is that a
unified theory of linguistics entailing both semantics (meaning) and
syntactics (operations or form) is needed which is suitable for
complete mathematization. (One candidate approach is due to Zadeh
[290] using fuzzy set theory. See also the work of Grenander for a
different perspective, [98]).

The basic analysis of uncertainty modeling revolves around a
series of general topics:

a) Internal vs external modelinq.

In the internal approach, explicit analytic relations are
sought connecting one approach of uncertainty to another. For
example, Negoita and Ralescu, through their representation theorem
[184] tied up very neatly classical fuzzy set operations with "flou"
(equivalently, level) set operations. As another example of the
internal approach, Goodman, Orlov, Nguyen, and Hbhle among others
(see [90], (197], [190], £116]) demonstrated direct connections
between random sets and fuzzy sets and certain of their operations.

In the external approach, unifying generalizations are sought
which reduce to various approaches to uncertainty modeling. Here
the work of Hirota (111], Schefe (224) and Gaines £68] may be cited
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for developing structures that simultaneously generalize probability
and fuzzy set systems.

The most far reaching work in this area is due to Manes [169]
who derived a collection of axioms which not only generalize pro-
bability theory and Zadeh's (min-max) fuzzy set theory [276'1, but a
whole host of other systems, including topological neighborhood
theory and credibility theory. (However, see Chapter 7 for details
on Manes' work, where it is shown certain restrictions must be
imposed on general logical systems to satisfy Manes' axioms.)

b) Prelinquistic concepts and Ideas obtained through
natural language. Cognition.

This topic concerns itself with the ability of natural language
to express ideas accurately and succinctly as well as the form-
alizing mathematizing of natural language for dealing with uncer-
tainties. Comments were made previously on the lack of progress in
this extremely difficult area. Ironically, we can express in a few
words, ideas such as love, happiness, temporal vague concepts, am-
biguous descriptions - which are perfectly understandable to another
reasonably educated speaker, as well as various combinations and
operations on these ideas - yet we cannot express these concepts
easily within a rigorous frame-work in terms of all the component
primitive or atomic parts. On the other hand, "complicated" mathe-
matical terminology such as is typically found in category theory or
algebraic topology or deductive logic studies, really express con-
cepts far simpler in nature than what language can express. (Of
course, we cannot discount the ability of language to represent -

albeit, how awkward - pure mathematical concepts.)

c) Concept of dispersions.

It is the firm conviction of both authors, as well as others,
(see Goodman [89], [90]) that because mathematical analysis has
shown that fuzziness is a weak form of randomness, i.e., a looser
type of randomness without the constraints of a probability distr-
ibution entailed, dispersions and their operations (see Chapter 2)
are natural tools to express linguistic concepts rather than pro-
bability distributions. Thus, the fundamental idea of a point
partially belonging to a set with degree specified as some number
between 0 and I may well be taken as an intuitive concept
representing the possibility that the point is in the set, rather
than the probability that it is in the set (the set is now consi-
dered as a random set) . See Chapter 5 for the development of
explicit relations between dispersion and random sets. Essentially,
a dispersion is equivalent mathematically to the class of all random
sets, which have in common the same one point coverage function,
namely the dispersion itself.

d) Development of general logical systems and problem of
ambiguitles.

This topic is basic in developing a unified approach to uncer-
tainty modeling. Too often in the past (e.g., Dubois and Prade
[51]) myriad distinct logical systems have been proposed for use in
modeling uncertainties, without paying attention to the inherent

I
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ambiguity of definitions present. More specifically, consider the
problem of defining an appropriate concept for the intersection of
two generalized sets. Originally, Zadeh proposed that minimum as an
operation on che respective membership functions was the most appro-
priate. Later, Bellman and Giertz (14] were among the f4rst to
justify on a rigorous basis the use of minimum as an intersection
operation. (See also the survey of Klement (140] on rigorous
characterizations of various fuzzy set operations, including inter-
section, union and complementation.) However, the justification
required certain constraints (such as mutual distributivity) which
are not realistically required within a general setting. Other
definitions for intersection resulted, including the use of product,
also justified, with again appropriate restrictions (again see
Dubois and Prade [51] for a survey). Clearly, minimum and product,
while both extending ordinary intersection (relative to zero-one
type membership functions) are considerably different. Zadeh's
original fuzzy set system and its many generalizations are all
truth-functional systems, i.e., evaluations of logical relations
depend on functional compositions as does intersection, in parti-
cular. Other non-truth-functional definitions for intersection
could be used such as that for probabilistic logic. (See Chapter 2
for further details.) Which one to choose or not? The answer t.
this problem may well lie in defining an entire class of dispersion
operations - not just a single operation - which in the most natural
way abstracts the ordinary concept of irtersection. At least for
truth-functional systems, such a class has been proposed. (See,
e.g., Klement (140], Goodman [88]). This class is called the
t-norms, a term borrowed from a branch of probability theory totally
independent of dispersion theory and developed by Schweizer and
Sklar (226] based on an earlier proposal of Menger. These operators
are symmetric, associative, usually assumed also continuous, obey
certain boundary conditions for compatibility with ordinary inter-
section, are nondecreasing in their arguments, and numerically are
bounded above by (the largest t-norm) the minimum operation. (See
again, Schweizer and 3klar (226]. See also, Haack (101] and Rescher
(214] for listings of multi-valued logical systems where special
cases of t-norm and t-conorm operators are used for "and" and "or".
The associativity an! symmetry conditions above may be dropped, with
soxue loss of structural properties in modeling conjunction. (See
sections 4.3.5, 2.3.6.)

Similarly, other classes of definitions may be developed :or
union (t-conorms), complement (negations, often in the form of
involutions), and in turn, these general definitions, through multi-
valued logic, may be us3d to develop general compound dispersion
operations and relations, including implication, the quantification
"for all", and "there exists," as well as various intermediate
quantifications suc' as "most", "few", and general subset and
arithmetic relationships. In addition, this leads to the general
concept of conditional dispersions or equivalently condi.'onal
attributes (analoguous to conditional probability distributions), a
form of Bayes' theorem and in turn, a theory of sampling based on
dispersions (Goodman [86]). (See also sections 8.2, 2.6 and the
appendix at the end of Chapter 10.)

Even with the general unifying approach as described, problems
of ambigultv of definition still arise. For example, the quantified
expression "for all x in X , if x has property A then x has
property B " is definable by the relation as expressed in English
by the repeated form
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<(x1 e A) a B> oi <(x 2 e A) * B> &,...,& <(x n e A) * B> " where

<(x e A) = B> means "if xj is in A then x is in B " or

equivalently "if xj has property A then x has property B

The xj vary over the entire universe of discourse X and A and

B need not represent ordinary sets but some general attributes
corresponding to dispersions. On the other hand, the same concept
could conceivably be expressed directly by a unary operation on a
properl-y chosen conditional form or, alternatively on the general-

1 n
ized cardinality n Z (AB)(xj) , where n = Card(X) This

J-1
unary operation is ; generalization of "for all", i.e., a monotoni-
cally increasing function over the unit interval which rises sharply
towards one near doinain value one and which otherwise is zero before
these values. Similarly, monotonic operations can be used in dis-
persion taeory to define "almost all", "at least most", etc. It is
easy to see that in general, though again two concepts extend the
ordinary meaning in zero-ne logic set theory of "for all," they
represent two different approaches to the universal quantifier. It
should be noted that the two approaches to defining the universal
quantifier depend upon the logical system chosen. Thus, in a truth-
functional context, the choices of t-norm or copulas representing
conjunction, complement operators representing negation, and
t-conorms and co-copulas representing disjunction all play a key
role. V hich ones to choose? Also, there is the fundamental problem
in modeling dispersions corresponding to the original linguistic
corcept. What individual variation of response should be allowed?
How specific should the universe of discourse be? For example, when
considering the attribute "long", do we consider ships, cars or
both? Is there some c-and scale where "long" can be quantitatively
established through a lispersion, other that the obvious fact that
it is some monotone increasing dispersion? This problem is analo-
gous to that of modeling an appropriate probability distribution:
Parameterize the allowable family of dispersions and then choose the
most appropriate value or values of the parameter (and hence, cor-
responding dispersion from the family through some estimation
technique based on empirically obtained evidence). (See Lakoff
£150], Hersh and Caramazza [109], Zimmermann [291], e.g., for vari-
ous approaches to the modeling of such functions.) Finally, the
functional extension problem should be mentioned, where ordinary
functions or relations between sets are extended to (still ordinary)
;unctions between generalized sets. Even if this ambiguity is
resolved other problems arise in designing how dispersions should be
logically combined. More specifically, in classical logic, any
multiple-argument (with zero-one values) Boolean truth function f
(polynomial) may be expressed as f = go( not ' Oand or) where

Pnot ' Pand ' Oor are the classical Boolean functions (by the com-

pleteness property of the above operations - see, e.g., Enderton
(54)). Then f can be extended to have a domain and range where
(0,1) is replaced by T[0,1] . In turn, f may be used as Manes
[169) and Gaines (68] proposed to combine dispersions - on the other
hand, the general logical operators for negation, conjunction and
disjunction as discussed earlier, combine dispersions differently.
(See Chapter 2.3.6 for details.)
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e) Relationships between dispersions and their operations and
probabilistic concepts.

The details of these relationships will be spelled out in
Chapters 5 and 6. Recalling the last comments of subsection c),
given a dispersion, it may be expeditious to choose one particular
random set one point coverage equivalt.it to it. Which one to
choose? How much information loss occurs when one random set is
chosen as opposed to the entire equivalence class? Could some
mathematical criterion be used to weed out this random set - such as
maximum entropy? What about semantic content? For example, consi-
der the simple attribute "tall". Clearly, this is represented by a
monotone increasing dispersion, i.e., the membership function of the
attribute "tall" must be monotonically increasing. However, it can
be shown that among the equivalent random sets for any such monotone
increasing dispersion, two considerably different random sets can be
constructed: The Su-type , which is a random interval with right

end point fixed at the maximal element in the universe of discourse,
and the T-type , which has a highly disconnected sturcture, not an
interval. Clearly, the first is more compatible with the concept of
"tall" - if one point is covered randomly by such a random set re-
presenting "tall", shouldn't all points to the right, representing
larger heights also be covered? Similarly, there may be a most
natural choice of random set representation for a given attribute,
when the corresponding dispersion is of some prescribed type, such
as unimodal, continuous, discrete, or is in the form of a step
function?

In a related vein, we may pose the question as how should
semantic-based information, and thus dispersions, be combined with
independently derived statistical information concerning a common
unknown parameter vector? Finally, it is of importance to ascer-
tain, through the relationships mentioned above, if random set
theory could be used to derive properties for dispersions.

1.2 Backqround and survey.

A key problem currently faced in AI (Artificial Intelligence)
and related systems is the determination of the most appropriate way
to model and integrate natural language information with numerical
and statistical information. There is no question that the solution
to this problem must - at the very least - draw upon the fields of
cognitive learning processes and psychometric theory, formal lin-
guistics, including an integrated view of semantics and syntactics,
probability and generalized forms of measure theory, and both
classical and multivalued logic. It is our belief here that an
encompassing theory of uncertainty can be established employing all
of the above mentioned disciplines which may successfully treat this
basic problem in Al.

Some investigators in the field of cognitive rationality have
come to the conclusion that rational decision making by humans is
really unattainable [128]. Others, such as Cohen (38), hold the
belief that intuition, properly systematized, can serve as a basis
for the choice of a normative theory of decision making. In turn,
the latter depends critically upon which fundamental theory or
theories of uncertainties and belief to accept. Polemics aside,
techniques will have to be developed which in some reasonable sense,
model uncertainties as faithfully as possible so that applications
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to decision making - such as the reconciliation of incoherent data
as discussed by Brown and Lindley [25) - may be carried out on both
the basic intuitive level and normative/rigorous level. The phi-
losophy of approach here is optimistic: It is the opinion of the
authors that Cohen's remarks are valid, despite the temptation to
present analogues (well-worn) with Heisenberg's uncertainty prin-
ciple in quantum mechanics.

Until relativeyrecent times, little systematic effort was ex-
pended in developing a rigorous scientific approach to the analysis
of natural language. This does not belittle the extremely important
contributions of Whorf and Sapir (Whorf-Sapir Hypothesis) on lan-
guage influencing logic (see [163]), Bloomfield's ground-breaking
work [20] nor Carnap's attempts at formalizing language influencing
logic [26], [27]. Nevertheless, it was not until the 1950's and
1960's, beginning with Chomsky [34), [35], Harris [107] and others,
that a rigorous approach was taken to the analysis of syntactic
transforms and relations in natural language. At present, many
diverse viewpoints (see, e.g., [47)) mark the field of formal lin-
guistics (see [173) for surveys illustrating several conflicting
viewpoints). In the area of semantics, similar diverse viewpoints
have sprung up. (See, e.g., Lyons [163] and Leech [153] as well as
earlier interesting empirical studies of Osgood, et al., [198] and
the independent recent theories of Grenander [98).) In addition,
statistical techniques have been used in analyzing various linguis-
tic problems such as message rates, speech patterns and comparisons
of literary styles [108]. Nevertheless, relatively little effort
within the large body of present day formal linguistics has been
devoted to analyzing natural language from a multi-valued logic
viewpoint.

It is our opinion that more emphasis must be placed upon inte-
grating semantics with syntactics within a general logic viewpoint.

Beginning in the 1920's with the Polish school of multi-valued
logic (see Rescher [214] for an excellent survey of the field),
other related logics were developed, including modal logic [245),
[28], intuitionistic logic [110] and temporal logic [215], [173'].
(See Haack [100), [101) for a survey of various systems.) These
logical systems (especially all of the variants of Lukasciewicz
Logic) were developed because of the apparent inability of classical
logic to model degrees of truth and uncertainty. It was not until
Zadek's pioneering work in 1965 [276'], and apparently independent-
ly, Klaua's similar (but not as well known) development in 1965
[139), that comprehensive models of sets based upon multi-valued
logic were established. Earlier work in this area include: Black's
"consistency profiles" [19]; Shirai's [234], and independently,
Skolem's set theory [239) both based upon three-valued logic;
Borel's ideas [22] - also discussed in Godal and Goodman [75];
Sheppard's quantification of linguistic concepts [233]; Watanabe's
continuous set membership function applied to quantum mechanics
[268); Gilmore's partial setG [74); Chang's infinite-valued set
theory [31]; and Zinov'ev's [2921 and Korner's contributions [145).
(See also Mayd.ie's treatise on many-valued logic as a basis for set
theory [172).)

Since Zadeh's first work, he and others have developed exten-
sive theories and applications of fuzzy sets based upon infinite-
valued lcgic - especially, with truth values in the unit interval,
or more generally within some lattice-like structure. Particular
emphasis has been on the development of fuzzy logic and the inter-
pretation of natural language [280), [283], [286) - [290]. In
addition, other schools of thought have arisen concerning modeling

I
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of sets and uncertainties, J icludlng Dempster-Shafer's belief theory
[46], [230), Cohen's inductive probability theory [37], Shackle's
degree of surprise concept [222] as well as many variants on classi-
cal and subjective probability theory. (See, e.g., Lindley, Tversky
and Brown [157] for second order probabilities and Fine (58] for an
extensive survey of approaches to probability models.) Freeling
[64) has recently made some comparisons of these schools. The
Dempster-Shafer theory is motivated to a large degree by Dempster's
original theorem [46], (230] establishing "upper" and "lower" proba-
bility uncertainty measures bounding the actual induced probability
measure by a functional transform of a random variable - when the
transform is known only up to coverage set values (resulting in a
random set). Somewhat analogous is the work of Bertsekas and Rhodes
[16] and Schweppe [225] in using set estimates in filtering pro-
blems. The uncertainty measures (yielding all four Choquet capacity
forms [90]) consist of equality-inequality extensions of the
Poincar6 expansion of the probability of the union of a collection
sets in terms of the alternating sum of the probabilities of the
intersections of all subclasses of the collecJion, and the dual
expansion. The Choquet capacity theorem [36] - as demonstrated by
Nguyen [187) (see also Goodman (90)) shows that upper and lower
probability - as well as other associated measures from the
Dempster-Shafer theory - may all be represented through subset and
superset coverage and incidence functions for uniquely determined
random sets associated with these measures. Indeed, there is a
relatively simple simultaneous bijective correspondence between the
class of all possible random subsets (distinct, relative to distri-
butional considerations) of a given space and each of the four
classes of uncertainty measures (90], [116]. (See also Chapter 3.)
A list of various uncertainty measures is presented in Dubois and
Prade [51]. (See again Chapter 3.) See also the recent interesting
arguments between Bayesian and Dempster-Shafer proponents over
Shafer's approach [231] to the Lindley "paradox" and in a connected
vein, see Lindley's claim [158) that subjective probability theory
is the only appropriate approach to uncertainty modeling. (However,
see our discussions on Lindley's claim in Chapter 10.)

Random set theory and its modifications, (such as through equi-
valence classes of random sets), could well provide a key to a
meaningful analysis of the many approaches to the modeling of un-
certainties by the establishment of rigorous relationships between
the theory of perception, natural language descriptions, multi-
valued truth and set theory, and other disciplines. The intuitive
basis for the use of random sets appears only slightly more compli-
cated than that for ordinary random variables. Indeed, as some
results in this text show, there is a natural relationship between
random sets and random variable representations of dispersions
(Chapter 5.2).

If dispersion theory and associated calculus are to become a
useful approach to knowledge-based systems, not only must feasi-
bility of implementation be shown (as the many applications in
literature indicate - see, e.g., Dubois and Prade for a listing
[51)), but also a sound theoretical foundation must be established.
Moreover, it is imperative to determine what direct relationships,
if any, are there between dispersion theory and existing well-
established theories such as probability theory and set theory.

Four steps toward the above-mentioned goals will be discussed
in the text. In summary:

1. General logical systems can be constructed which contain
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classical probability logic. (See section 2.3.5.) On the other
hand, any attribute may be represented by the class of all random
subsets of the attribute's domain space which have a common one
point coverage function coinciding with the dispersion for the
attribute. A related result holds with respect to random variables.
In addition, isomorphic-like relations (i.e., isomorphic relations
modified for equivalence in the one point coverage sense) exist
between large classes of dispersion operations and ordinary corres-
ponding operations on random sets. In general, each ordinary set
operation on random sets has many isomorphic-like dispersions ex-
tensions. (See Chapter 6.)

2. Dispersions may be derived as truth function realizations
within the unit interval of truth values of compound predicates
involving basically memberships of points in sets. These compound
predicates - before evaluation - are in the main, motivated by, and
have the same forms as, those in classical two-valued logic.
Alternatively, a topos (or topos-like) structure (Johnstone (127],
Fourman and Scott [59]) encompassing dispersion theory can be
established so that all classical concepts can be put into a formal
language which is realizable through that structure and may be
interpreted as generalizat lons of the classical concepts (Eytan
[56], [57], Ponasse [204]). (See section 2.4.)

3. Natural language expressions may be symbolized, and sub-
sequently analyzed, in an efficient manner by use of dispersion
operations, often without the constraints posed by a probability
formilation. Rather, more compatible with the often vague and
non-numerical nature of language, an equivalence class of probabil-
istic models (more specifically, random sets) should be used, which
in ;ffect is the same as simply employing a dispersion description.
A number of examples will be presented in section 2.6 showing how a
variety of different sentence types may consequently be interpreted
within a dispersion formulation. (See also the appendix in Chapter
10.)

4. By making use of the results presented in this monograph, a
detailed application is given in Chapter 9, demonstrating how dis-
persion theory may be used as a vehicle in the symbolization and
utilization of natural language information in conjunction with any
probabilistic information present.

1.3 Organization of the monograph.

The book is composed of ten chapters. The bibliography of
those works cited here is given at tha end.

With respect to the mathematics involved, a standard knowledge
of mathematical logic, measure theory, probability theory and mathe-
matical statistics is required. In Chapter 2, some topos theory and
algebraic logic background is necessary. Since the book is moti-
vated and developed towards applications, familarity with systems
concepts may also be useful.

Graduate students in applied mathematics, engineering science,
and mathematical statistics should find no great difficulty in
reading the treatise.

This chapter has presented some motivations for studying un-
certainty models, as well as a framework of analysis, and a brief
survey of the field. Chapter 2 deals with the concepts of natural

I
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and formal language, semantic evaluations, multiple-valued logic and
set theory and general logical systems. General logical systems
encompass both (i) truth-functional systems that extend Zadeh's
and other concepts of fuzzy set theory and (ii) classical pro-
bability logic (a semi-truth functional system) and a natural
extension (Lebesgue-Stieltjes Logic). Also in Chapter 2, examples
of truth evaluation of natural language are shown. (Because of the
number or topics treated, which are important for the development of
the remaining portion of the text, Chapter 2 is of much greater
length than the other chapters.) Chapter 3 treats useful classes of
uncertaiyty + zn tXe cCz..:pt of diptzsioAAs. Chapter 4 gives an
introduction to the well-established (but relatively little known)
theory of random sets needed for subsequent investigations. In
Chapter 5, a systematic study of the connection between random sets
and dispersions is carried out. Following this, Chapter 6 develops
the isomorphic-like connections between general logical systems and
random set models. Chapter 7 discusses some relevant theories of
uncertainty, including the ideas of Manes, Watanabe and Gaines.
Chapter 8 develops rules of inference based upon techniques of
general logical systems investigated in preceeding chapters. These
rules can be applied to the problems of knowledge representation,
combination of evidence and decision making In knowledge-based
systems. Chapter 9 is a detailed application of the techniques
developed in this monograph to a specific problem, namely the target
data association problem.

A summary of the chief results of the text is given in Chapter
10. This chapter also contains the discussion of research issues
and future directions.

0

0



I
CHAPTER 2

SYMBOLIZATION AND EVALUATION OF LANGUAGE

2.1 Introduction

One of the most distinguishing features of mankind with respect
to other life forms is the ability to develop and formalize abstract
concepts and ideas (the recent chimpanzee-ape language controversy
notwithstanding - see [68']). Natural language is the initial ve-
hicle through which these ideas and concepts are expressed. The
most complex mathematical expressions are meaningless unless they
represent concepts at least theoretically expressable in natural
language. Thus in summary, it Is not unreasonable to state that all
ideas may be posed within a natural language format. In many cases,
vagueness or ambiguity of descriptions are not easily captured by
rigid mathematical expressions, but are more conveniently repre-
sented in natural language.

In many real-world problems, information arrives in the form of
natural language expressions such as "if the skin color is pink,
jaundice may be present" or "most blue birds have feathered wings".
Thus, natural language as interpreted here is capable of both
expressing exact concepts as well as ambiguous or vague ideas.

In order to make such problems more precise and to establish
rigorous solutions, a formal language for meaning-representation
must be established, wherein all natural language concepts are
carried over Into semiotic forms, i.e., strings of symbols, apprc-
priately formed. The semantic evaluation of these strings reflects
the degrees of uncertainty associated with concepts represented by
the strings. Ideas which are "absolutely true" or certain are eval-
uated as T or unity. On the other hand, concepts such as "John is
quite tall" or "an orange is big" may have less than unity truth
values associated with them, if the relevant logic is not just
restricted to (0,1 . h

This chapter establishes a unified framework connecting natural
language, formal language, and semantic evaluations of expressions.

The following diagram in Figure I illustrates roughly the flow
of knowledge from conception to evaluation:

p 13
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Communication

.iure.. Language Language Logical
A Whorl- Parsing Semantic Sytm

Saptr Principle Evaluations,
Hypothesis Models

Problem Phllsophes
Solution Nominalism, t o

naturaalanguge. ,Wete th atclrlnug pknbanin
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Rationalism , Knowledge

G-.Febac Systems

Interest: p RealE Heuristics
iUncertailntte r Worl o

Problem Particularization _Combination of

Generation n n Evidence Problemsn

Figure I Flow of knowledge from conception
to evaluation.

2.2 Natural and formal languaces

2.2.1 Preamble

As mentioned before, all thoughts of man are enunciated through
natural language. Whether the particular language spoken by an in-

d1v3dual restricts or otherwise channel es suthoughts - as, e.g.
color limitations of certain African tribes or expansion of subtlety
as in German philosophy or Eskimo descriptions of snow conditions -
Is still a matter of controversy. (This goes back to the f amous
W'iorf -Saplr hypothesis concerning natural languages inf luence upon
thinking and the Berlin-Kay "universalistic" antithesis [271],
[153].) These concepts include vague Ideas such as "love", "hate",
"much", "some", "above", as well as more arithmetic concepts "if two
convex bodies in Hilbert space are disjoint, then a separating

b
hyperplane may be found", " f cos (x) dx - sin (b) -sin (a) ", etc.a
See Allerton (3] and Dingwall [47] for analytic surveys of natural
languages. See Lenneberg [155] for a discussion of the biological
basis of language. Leech [153] proposes that language can be rough-
ly divided into three areas: pragmatics, syntactics and semantics.

The seminal paper of Lakoff [150'] on linguistics and natural
logic is completely in accord with the spirit of the approach taken
in this text: to model how humans empirically perceive truth through
natural language descriptions and associated reasoning.

Formal language in its most general form can be described as a
collection of (1) primitive symbols, (2) syntactic rules for combin-
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Ing symbols, and (3) compounds of strings of symbols produced by the
recursive application of (2) to (1) and itself. An interpretation
of formal language always exists, symbol by symbol, within some
"natural" language. Conversely, it is assumed that any natural
language, given enough time and patience, can be fully symbolized
within a formal language setting. Indeed, the thrust of modern
formal linguistics as carried out by Chomsky [35], Lyons (162],
Allerton (3] and others is the development of formal language rules
of syntax which reflect ana explain the nature of the natural
language in question, as opposed to the earlier structuralistic-
behavioristic-ciassificatory approach to language. (See "On Noam
Chomsky: "Critical Essays", pp. 2 - 32, by Searle [227] for further
discussions of the two schools of thought as well as the entire book
for summaries and implications of Chomsky's work.) Basically,
Chomsky emphasises syntactic modeling via (1) phrase structure rules
which carry the "deep structure" and determine therefore the seman-
tic content and (2) transformational rules which act upon (1),
changing forms but not semantic content, such as inversion of words,
use of synonyms, and change of voice from active to passive. Even
the above description Is subject to many exceptions and changes.
(See Dingwall [47], Allerton [3] for surveys and controversies.)

It is necessary to keep in mind that we are interested in a
mathematically sound form of semantics rather than the "formal
linguistic" approach as mentioned above. Thus, syntactic structures
that will be developed will correspond approximately to formal
linguistic phrase structure rules rather than to transformational
rules.

Parsing principle

In applications we assume a mapping exists between any given
natural language and its formal language representation.

For further details on the Parsing Principle and other related
procedures interpreting natural language in terms of formal lan-
guage, see section 2.6 and the appendix at the end of Chapter 10.
For an excellent survey of cognitive processes and natural language
see, e.g., Winograd [274']. See also Gregg [98'] for a compendium
of papers on knowledge and cognition. For an extensive presentation
of semiotics (the study of symbols used in language and codes), see
Eco (53'].

2.2.2 Basic structure of a formal languaqe

We present here the basic structure for a formal language.
The metalanguage and metalogic of the following study is ordinary
English within the two-valued classical predicate calculus setting.
(See the remarks in the Introduction (Chapter 1).)

A many-sorted (possibly higher order) formal language L Urn-
uists of a syntax part L , plus a possible additional theorysyn
ThK(L) and the results of that theory. In addition, L operates

upon its alphabet or collection of symbols, symb(L), including
parentheses ( ) , letters a, p, , ..... a, b, c. ..... i, j, k.....
braces ( ) , formal deduction I- , and specially designated symbols
such as , a' a , V , etc. From now on, we will use Symb(L) ,

but not consider it as a formal entity. (Note, however, the car-
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dinality of Symb(z) is needed, e.g., for the Lowenheim-Skolem
property. See 2.3.3 (a) (xii).)

Z syncontains, firstly, a category of types of things,

Core(L) . (See the appendices at the end of 2.4 for definitions and
properties of categories and deduction categories.) The objects of
category Core(L) are the actual types, including the subclass of
sorts, co,,sisting of Ob(L) , an index, referring formally to rele-
vant universes of discourse, Ar(L) , an index, referring to arrows
(generalizations of functions) between these universes of discourse,
and an index Rel(L) , referring to relations upon the universes of
discourse. The arrows of category Core(L) are the function
symbols occurring between the types, each such symbol formally
representing a function from one type to another. (Two given types
may have an infinity of arrows between them.) The collection of all
such arrows or function symbols for Core(L) contains several im-
portant subclasses, including: Cat(L) , the class of all fun ztAon
symbols representing category (and deduction category) theory con-
cepts, such as arrow domain, codumain, composition, projection,
identity, product, substitution, signature, used for sets, functions
and relations (as later interpreted in the semantic evaluations in
section 2.3); Foun(L) , the class of all function symbols repre-
senting set theory concepts, including membership, equality, class
abstraction; Loc(L) , the class of all functional symbols represent-
ing logical connectors, including T , I , not , & , or , implica-
tion, etc.; and Quan(L) , the class of all function(al) symbols
representing quantifications such as universal quantification and
existential quantification, as well as including possibly various
degrees of partial quantification ("much", "many", "about 3/4",
etc.).

Secondly, Lsyn  contains a theory of syntax Th syn() con-

sisting of axioms and rules described through sequents (or certain
ordered pairs involving predicate symbols) which produce the class
of deducts or theorems De(Th(Lsy) , from which, in turn, one

obtains Var(L)

Var(L) Is a deduction category representing all basic varia-

bles for L The object part of Var(L) , Ob(Var(L)) consists of
the collection of all formal universes of discourse of interest,

i, J, k.....; the arrow part of Var(L) , Ar(Var(L)) , contains all
arrows (or generalized functions) between the formal universes of
discourse, (f : I -* J), (g : k -# J), (h : j x j -# k ), (fI : k -+ i),

including the subclass Wfv(L) of all projections here or individ-

ual variables such as x(i) = (proj kxi) : k x i -# i)(k (=oikl k×i i
y(k) =(projk(kXxj) : kxixj . k) , etc., and the bigger subclass of

all individual terms Wft(Z) which is defined as the composition of

all arrows of Var(L) with all elements (i.e., arrows) of Wfv(L)

where well-defined (by use of Th syn()) , such as f(x (l ) ) foxM(I)

g~(k)) (kc) (I) .(k). (i) (kc)g(y)) = goy , h(f(x() , g(y) ho(<fox ,goy >) , etc.

The relation part of Var(L) , Rel(Var(L)) consists of all
relation symbols (formally representing relations) upon the formal
universes of interest, ri, s. ... I r jxi  rj, sj, tk ..... This

0
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includes the subclass Wfat(L) , the atomic well-formed formulas,
which is defined as the class resulting from the substitution
operation (where well-defined) of individual terms into relation

symbols such as sIxM(1)I, r xi[<f(x(i)), fI(y(k))>] , etc. In

turn, Wfat(L) is included in a generally bigger class, Wff(L)
of Rel(Var(L)) , the class of all well-defined formulas of L
generated or spanned recursively, by applying Loc(L) and Quan(L)
(where well-defined) to Wfat(L)

We define the class of all basic well-formed terms of L as
Wfter(L) L Ar(lar()) U Rel(Var(L)) , which contains the class of

all well-formed expressions of L , Wfex(L) 9 Wff(L) U Wft(L)
Connected with Wfex(L) are the total, free, and bound indi-

vidual variable maps which identify which individual variables occur
in a given well-formed expression, which are bound or controlled by
quantifiers, and which are free of control.

ThK() , analagous to Th syn(L) , consists of axioms and rules

involving sequents, but in this case, the sequents are all of the
form (,P % 0) , where ?,e E Wff(L) and is the fixed predi-
cate symbol representing formal or deductive implication and hence
(Y - 0) may be interpreted as " ? deductively implies 0" , etc.

The chief consequence of ThK(L) is De(ThK(z)), the class of all
sequents here obtained by (recursively) applying the rules to the
axioms. Each such (r, hz t ) e De(ThK(L)) may be considered a

theorem of ThK(L) with hypothesis r and conclusion 0 Depend-

Ing on the choice of ThK(L) , De(ThK(Z)) will reflect the various

relationships between wff's relative to FuncSymb(L) . The choice
of ThK(Z) - as presented later in this part - usually emphasizes
Foun(Z) , Loc(L) , and Quan(L) - as opposed to Th syn(L) which

essentially refers only to Cat(L) Although, a specific theory
will be chosen for Th K(L) here, it is obvious that any other
theory, say, ThK,(L) could be appended in place of ThK(L) and

developed analogously. Indeed, it is in this sense that we define a
formal language as used throughout the remainder of the text. When-
ever ThK(L) is actually used in Z , this will be so indicated

(and called ThK()).

I. Basic syntax of Z

The basic syntax Lsyn  of L may be described as consisting

of the core of L , Core(L) , the syntax theory Th (L) , thes yn,

variable class Var(L) , the well-formed term class Wfter,(Z) , the

well-formed expression class Wfex.(L) , and the free and bound

individual variable maps FVo(L) , BnV,(L) , respectively.

Specifically, Core(L) = (ObJ(L),Arr(L)) is a category of
types, so that we may identify Typ(L) = Obj(L) , the object class

I



18 Goodman and Nguyen

of Core(L) and FuncSymb(Z) = Arr(4) , the arrow or functional
symbol class of Core(L) (For a review of category theory con-
cepts, see appendices at the end of 2.4.) L is a higher order
formal language, in general here, because Sort(L) , the class of
basic types or kinds of things we are concerned with, is more than
one in number. Here Sort(L) = (Ob(L),Ar(Z),Rel(L)) , where: Ob(L)
refers to objects which later (in the semantic evaluation) may be
interpreted as generalized sets or members of such (generalized)
sets; Ar(L) refers to things which later may be interpreted as
functions or arrows between the objects or generalized sets; Rel(L)
refers to things which may be interpreted as relations in, or on,
the generalized sets. In turn, Typ(L) , the class of all types,
can be considered as the class of all possible compound or mixtures
of sorts, relative to the primitive operation * , cartesian
product, and possibly additionally @ , exponentiation. Thus, we
can write

Typ(L) = span(Sort(L),{e, @ )

By the symbol span(A,Q) , we mean: A is a given collection
of entities and Q = {Q1,Q2 ....} is a collection of operators

or more generally, procedures, with appropriate mixed iterates
Q "QW well-defined , {'I . n }  {1,2,...) where in particu-

1 n

lar, we note Q n = Q. and = Identity, such that

(1) Q "Q, ospan(A,Q) S span(A,Q) ; for all

1 n
l, ..,n, n 0

(2) Span(A.Q) is the smallest such collection in (1) so con-
structed.

Another name for this procedure is the free algebra generated
by Q over A or the strings generated by Q over A . (See
Enderton [54], Chapter 1 for further elaborations and connections
with homomorphic extensions, etc.)

Back to types: A typical example of a type here is

Ob(L) x Ob(L) x aRel(L)xAr(L) , etc.

(Note also, the symbols x and a as used in a later part of the
development of L will have a different interpretation.)

The arrows or functional symbols making up Arr(L) are of the
typical form (remember that Core(Z) is assumed to be a legitimate
category!) (F : a A /) or equivalently F E Arra , (Core(z)) , for

any a,p e Typ(L) Thus, composition and identity are assumed well-
defined here so that, if a,p,l E Typ(l) and F e Arrap(Core(L))
G e Arr (Core(Z)) , then GoF E Arr (Core(L)) and

Id oF = F = FoIda , etc. (Again, note that abuse of notation takes

place here, since o , Id are used later for a different meaning.)
Arr(L) contains a number of specially designated function

symbols, i.e.,

0
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Arr(L) 2 Cat(L) U Foun(L) U Loc(L) U Quan(Z),

where:

S (S :Ar(L) - Ob(L)) - domain map
B (B :Ar(LC) - Ob(Z)) - codomain map
0 (0 Ar(L)YAr(L) -4 Ar(L)) - composition map
Id (Id :Ob(Lt) - Ar(L)) - identity map
proj (proj :Ob(L)XOb(L) -# Ar(L)) - projection map
a (a :Rel(L) -- Ob(L)) - signature map

Cat(Z) 2 -(--1 (-[--1 Rel(L)X(Ar(L) -# Rel(L))- substitution map

X(x :Ob(L) n. Ob(L)) - (cartesian object)

b)n product map
(t Ob -. Ob(L)) - (cartesian object)

sum or coproduct map= (,> Ob(L - Ar(LC)xAr(L)) - special arrow
product map

= n Ob(L) -. Ob(L)) - exponent map
G e Ob(Lt) -. Rel(L)) - membership map
X (X : Ob(L) -. Rel(L)) - equality map

Foun(L)? Ex =(Ex :Ob(L) -. Rel(L)) - existence map
Ob(Z)x~b(L)xRel(L) -. Ar(L))- class

abstraction map

T (T :Ob(Z) - Rel(L)) - truth map
I (I Ob(Z) - Rel(,L)) - false map

nt (nt :Rel(L) n-# Rel(L)) - negative map
& (& Rel(L) n e()-cojntnma

or (or: Rel(L) -. Rel(L)) - conjunction map
Loc(L) 2 z (* Rel (L) )xRel (L) - Rei (L)) - implication mapid (id :Rel(L) -. Rel(L)) - identity relation

map
maybe = (maybe :Rel(L) -. Rel(Lt)) - doubt relation

map
Poss = (poss :Rel(L) *.Rel(L)) - possibility map

V ( :Ob(L)xOb(L)xRel(L) -. Rel(L)) - universal

quantification
3 : b(L)xOb(L)xRel(L) -. Rel(L)) - existence

QuanL) 2quantification
Mo N (o :Ob(I)xOb(L)xRel(L) -. Re 1(L)) - "most" map

Abt 3/4 =(Ab t3/4 :Ob(Lt)xOb(L)xRel(L) -. Rel(L)) - "about 3/4" map
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Note that we can classify the logical connective functionai
symbols as

Loc(L) = U Loc n(L)
n=l

where Loc n(L) represents the n-ary logical connectors of interest.

Hence,

LOC 1(L) 2 {nt, id,. .

Loc 2 (L) 2 =, or,. .

etc.
Note that in the case of a and or , we may well wish to ex-

tend their domains to include any numbcr of arguments. (One way of
doing this is to formally assume sy.ametry and associativity, intro-
duced by adding the appropriate axioms and rules. (See the later
development for z in III and VI for babic theorems connected with
theory ThK(L) , demonstrating symmetry and associativity of opera-

tors &(=A here) and or(=v here).)
In order to complete the syntax of L we need the concept of a

theory for L . In addition, we will also need this concept when we
consider logical, set foundations at,, quantification properties for

First, define the (Gentzen) sequent class.
Let Predsym(t) be a collection of predicate symbols. Then

SeqA(L) = A(L) x Predsym(L) x A(L)

where A(L) is some class of elements, s. that typically, if
?,e Q Term(Z) , (r L- z) e SeqTerm(L)(Z ) , o, if, further,

T,8 G Var(Ar(L)) , (7 =Ar(L) ) 4 Seqv arAr(Z))(. ) , etc.

Then any axiom collection Ax(L) for L aid A(L) satisfies

0 0 Ax(L) Z Seq (z)
A(L)

and any rule collection Rul(z) for z and A(L) sati-fies

0 0 Rul(l) Z Seq(0) (L) U SeqL)x... xSeq(L)
A(L) n=l % ,

n factors

A corresponding theory Th(L) is +hen defined to consist of

Th(L) 9 (Ax(L), Rul(L))

with the class of deducts or theorems De(Th(L)) p-oduced by Rul(L)
acting upon (or more formally, as a relation or tcnction product
upon) Ax(L) Thus, we write

De(Th(L)) = span(Th(L)) Z Seq (L)
A(L)

0



Symbolization and Evaluation of Language 21

In general, each element R G Rul(Z) is in the form
If (?l l l), ... , (nynon ) then ( n+l 7n+In+l)

where "if" and "then" are in the usual 0 - 1 metalogic context
and (f i wn) e Seq (L)

Furthermore, we may be interested only in some subclass of
deducts

Ser (L) Q De(Th(L))
A(L)

For any (T79) e Seq (L) , we call T the hypothesis and
A(L)

a the conclusion or inference.
Next, the basic variables and constants of Z will be con-

sidered. This is provided by a fixed basic variable mapping
compatible with x and a

Var : Typ(L) Ob(SET)

where SET = (Ob(SET), Ar(SET)) is the category of all ordinary sets
and functions between them. (Again, see Appendix I at the end of
2.4) , so that in particular the basic variables are

Var(Ob(L)) Z (i, il, i2 ' .... j' ill J2 .... k... .

individual object symbols

Vat(Ar(z)) 2 (f, fit f2' . .... g, . ... , h,. .

individual arrow or .unction symbols

Var(Rel(L)) 2 (r, r I , r2 . . . . .  s, s i t ... , t, u. ..... w ....

individual relation symbols

Var(Ob(L)xOb(L)) = Var(Ob(L))xVar(Ob(L)) ,

Var(Ar(L)×aRel( z)) = Var!Ar(L))x£Var(Rel)(L))

etc., where the right-hand side symbols x , £ are ordinary
cartesian product and exponentiation.

Note also that generally, basic variables include basic
constants, denoted by Cons(-) , so that

Var(Ob(L)) 2 Cons(Ob(Z))
= (ia ,  ib..... , ... ,

where 1a b ... represent individual constants or terminal ob-

jects in category theory notation and 0 represents the null object
or null set or the initial object (in category theory notation).

Other constants (or semi-constants, such as terminal arrows

fi'a : i Ia) or initial arrows (goj : 0 - J) can be desig-

nated as needed in Cons(Ar(L)) ! Var(Ar(L)) , etc. (Again, abuse
of notation here involves 1 and 0 .) Je define the class of all
basic variables as
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Var(Typ(t.)) g Var(a)
aeTyp(L)

and the ordered pair

Var(LE) = (Var(Ob(L)), Var(Ar(L)))

Next, we consider the class of basic terms, Term(L) ,possibly

quantified formulas Form(L) , atomic formulas, Atom(L) ,individ-

ual terms, Indterm(L) , and individual variables, Indvar(L) , and
individual constants, Indconst(L).

We first form the formal -pans generating successively, these
classes. But in order to restrict the classes to meaningful quan-
tities, we must add the first-level syntax theory
Th Isn(ZL) = (Ax Isn(L), Rul Isyn (L)) giving Var(L) a category

structure. (See later remarks.)
In turn, we also add the second-level syntax theory

Th1 , 'syn(L = (AII,syn' (z ulII~syn (L) , to completely specify
the well-formed terms Wfter0>(L) and well-formed expressions

Wfex(L).

Thus, we have formally,

Term(L) =' span(Var(Typ(L)), Arr(L))

" Form(L) =l span(Forml(L), Quan(L))

" Form' (L) -span(Atom(L), Loc(L))

" Atom(L) Var(Rel(L))tlndterm(L)]

(.['.])(Var(Rel(L)), Indterm(L))

Also,

Term(L) 2 Indterm(L) 4 span(Indvar(L), Var(Ar(l)))
d" Indvar(L) proj(Var(Ob(L))xVar(Ob(L)))

" Indconst(L)

with the class of predicate symbols

Predsym(L) = (= Ob(L)' Ar(L)' =Rel(L)' _L E, .

used in the theories Th Isyn ( L) , Th II,syn(L)

Some selected first-level syntax axioJms and rules from the 18
given in Appendix 2 on Deduction Categories and Formal Topoi (at the
end of 2.4):

For all i e Var(Ob(L))

R Isynl1;i: CS(Id(i)) =Ob B(Id(i)) =Ob i)

For all k e Var(Ar(L),

R ~sn2;: k(I(Sk))=ArIdBk)ok=A0k
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and (S(f) =QbB(g)), (S(g) =ObB (h)).

R lsyn4fgh For all f,g,h e Var(Ar(L))

then

((fog)oh = Arfo(goh))

For all i,j e Var(Ob(L))

R . .:8;~j (B(proj I(ixj)) =O i)
I(synproj 2(1)j) =Ob)

R ,syn, 17; f,a: For all I ae Cons(Ob(L)), all f e Var(Ar(L))

(B(f) = 1)Ia hn (f=A (S~ff))(a a terminal arrow

map).

Remarks concerning individual variables.

Recall

Indvar(t) =proj(Var(Ob(t)) x Var(Ob(L)))

U Indvar .(L)
ieVar(Ob(L))

If 1.,j e Var(Ob(L)),

X )dproj((ixj)xi) d .ro(ixj)e nvr(-proj 1(i) EnvrI(L

X(j) d po(ijx po(J)e Indvar (1)
Xixj =ro(ijj)-P 2 (j)j

etc.
We usually drop the subscript i x j from the individual

variables.
Note also the distinction, e.g.,

XM dI proj 3(kxixixjxi)

and

y -i C proj 2 (kxixixjxi)

Also, note the basic identification (which can be produced as a
rule or theorem) for all i,j e Var(Ob(L)),

proil i(i) -1dMi ; Id(ixj) = <proj.(ixj), proj (ixj)7>aj

= IiXJ>,ec
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Finally, note the individual constant maps:

Indconst(t) U Ar 1 1a(Var(l))'

1 a1eCons(Ob(L))]

where category Var(Z) Is described later.
Analogously, second-level syntax axioms and rules may be ob-

tained as abstracts of the corresponding ones in Appendix 2 at the
end of 2.4. In the following development, all quantities -tay be
Interpreted as ordinary sets and elements and all predicate symbols
such as r. , e, = , ... may be correspondingly interpreted as the
usual set relations a . with only a minor abuse of
notation.

R II,syn,i (Var(Typ(L)) 9 Term(.L) = U Term a L)

ac-Typ( Za

For all a A , F , g:

RI,syn, 2, :If (a,p e Typ(L)) and (g e Var(c))

a ,p F,g
((F :a -p)e Arr(L))

then

(F(g) ETerm A(L))

For all I

R II~s 3 ;i It (I s VarCObCL)))

then; (Indvar I(Z) 9 Indterm i(L)

For all i,j,x (i), fI

R Isyn, 4, If (i,j eVrbL) (x~l e Indvar i(L)

i,j,x i,f
(f e Var(Ar(L))) , and

(S(f) = ) ,(B(f) = j)

[i.e., f ( f : A -. j)] ,

then (f(x (i) e Indterm (It))

where f(x(i) ) 9 foxM .

Note, using f = (Id(i) : I) , i R IIsyn,3 becomes super-

fluous.
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R IISn5:(Indterm(L) = U Indterm 1(1))
II~syn,5JeVar(Ob) (1))

For all i,r,x

RII,syn,6 If (i e Var(Ob(L)) *(r e Var(Rel(L)

(x~i G Indvar i(Z)) ,(o(r) =i

then

(r( ] e Atomform(l))

R IIsn7 (Atomform(L) G Form' CL))

For all ?i, ... o ,? .7, n ,

R II~yn,8 Iif ?V ...,'IF n4 Formn(L) , ie Loch n(L))

n,T1 .. or ,~

then

R IIsn9 (Forml(L) S Form(L))

RII,syn,10 :i

For ~ll q,~ i

ixj I

(Ixj)

i(i)

R I~sy,11 If(i,j e Var(Ob()) , (x * IedVar(bL)))xj

GV Form(L)) , (c()= x J)

then
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(( e Indtermj)L).

Again, see Appendix 2, end of 2.4 for all corresponding deduc-
tion rules and axioms concretized for deduction categories and
formal topoi.

We summarize the axioms ;and rules previously introduced and
connect them with Term(L) In order to produce the class of well-
formed expressions:

Th I,syn (L) = (Ax I,syn (L) ,Rul I,syn(1.))

where, because axioms can usually be formed as deduction rules and
vice-versa, we simply abuse notation and let

Ax Isn(Z) U Rul1 Isyn(L)

RI,syn,i . I,syn,17

Se Temz)L Term(L) X S=Ob' =Ar' =Rel) x Term(l)

Th I1sn(L) = (Ax IIsn(L), Rul Isy(L))

AII,syn L)Uu II,,syn (L dRII,syn,l U.. RII,syn,ll

U R ITh~o U R IThil U RITh,2

a SeqAI(It) (L) = A 1 1 (L) Y. eQ= Y A 1 1 (L),

where

A II(L) { Term(L), Term a(L.), Term A(L), Indvar I(L),

Indtermi(L), Atom(L), Formlt), Form(L)...)

and where, e.g.,

RI,syn,l (RI,syn,l,i 1 al 8

R R I all i,J,x (i) r
II,syn,ll {II~syn,ii; (ixi)l

J'(I)
(ixj)t

etc.

We combine the two theories together yielding

Th sy,(L) = (Ax sy,(L), Rul syo(L))

Ax sy,(L) U Rul synLI)
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I Rsyn,1 u U RIsyn,17

U RII,syn,l U U R isynll

U R I,Th,0 U U RI,Th,2

SSeq Term(l ) () U SeqAii(I) (W)

In turn, now form the class of deducts

De(Th syn(Z)) = span(Th syn.())

Next, project out the first component in all sequents of the
form (r E G) and intersect these with the appropriate subclass of
Term(L) to obtain the well-formed subclasses of Term(L)

Wfter,(L) d proj(.-e. ) (De(Th syn,()))

the class of all well-formed terms (in, Term(L)) , which, by use of
Th syn(L) , may be identified with Var(Ar(L)) U Var(Rel(L))

Wff,(L) - Wfter,(L) n Form(t) ,

the class of all well-formed formulas (wff's)

Wfat(L) =d Wfter(L) n Atom(L)

the class of all well-formed atomic formulas;

Wft o (L) d Wfter,(L) n Indterm(L) ,

the class of all well-formed individual terms,

Wfvo(L) Wftero() n Indvar(L)

the class of all well-formed individual variables

Wfco(L) d Wfter,(L) n Indconst(L) ,
the class of all well-formed individual constants.

Then define the well-formed expressions of L as:

Wfexo(L) Wffo(L) U Wft ( )W

=Wfter° (L)

= Var(Ar(L)) U Var(Rel(L))
since we can use RI,syn,14 to identify any r E Var(Rel(t)) with

r[Id(a(r))] e Wffo(L) , noting that Id(a(r)) e Wfv,(L) , and where

compatible with Th syn() , we can identify the originally

syn
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apparently smaller class Var(Rel(L)) with Wff0 (L) 1

Th sy,(z) , with the appropriate spans generating Term(L),

Form(L), Atom(LI, Indterm(L) , etc., implies Var(l) is a category

and Var(L) 9 (Var(L), 39(1)) is a deduction category, where X(L)
is specified below. (See the appendices at the end of section 2.4
for definitions and properties of deduction categories and formal
topoi.)

First,

Var(L) =(Db(Var(L)), Ar(Var(L))) is a category, where

Ob(Var(L)) 2 Var(Ob(L)) = {,.j. ..... }

Ar(Var(L)) =9 Var(Ar(L)) = (f,...,g,...,h ... .)

where we note that (because of Th syn, (L) )we may identify

f =(f : -. J) ,for i,j e Var(Ob(L)) with f e Ar ±'j(Var(L))

and the identify arrow is Id(i) =(Id(i) I -+ i) (having the
usual category properties) and composition here (is derived from
o Ar(t) x Ar(L) -* Ar(L) as a function symbol) is the usual
category composition: (f : i - J) , (g :J - k) , yields
(gof : I -* k) , etc.

In addition, X(L) :Var(L) -+ Preord is a contravariant functor
given as follows:

For all i E Var(Ob(L))

x(L)(i) ( r I r G Rel(L) and a(r) = I)

We write

The predicate symbol It is an appropriate partial order on

each X(L)(i) by use of axioms R IThO - R ITh,2 and R Isyn,15

(see Appendix 2, at the end of 2.4). In turn, we can extend this
order In a natural way, for any ri, s, e %C(L)(i):

Define (r I 1 L s iff (ri '-L s,) e DeCThsyn bb(l)) for

the appropriate case of b (b = 0 , here, later extended to b =K)

* For any i,j e Var(Ob(L)) , and any (f : .J) (i.e., any
f e Ar ij(Var(LE))),

VC(L)(f) 6 Ar X() X(L)) (Preord)

where for any s9 1 X(L)(j),

XWM(S~ s1 [ f]

and since o(s 1 f]) =i (see axiom R1Isyn,12 of Appendix 2)
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XWz(f)(s) G 9(1)(.')

Note also X(L) is order preserving w.r.t. L by use of

RITho

Finally, the basic syntax of z will be completed with the
addition of the free and bound individual variable mappings.

The free individual variable, total individual variable and
bound individual variable maps are given by, respectively,

FV,(Z), TV,(L), BnVo(L) : Wfex (z) O (Wfv,(L))

given by BnVO(z) = TVO(L) -4 FVo(Z) , where

(1) For all x(i) e Wfvi (f) , i e Var(Ob(z))

TVo(x(i)) = FVo(x(i) )  (i())

and hence

BnV,(x(i)) = 0

(Ii) For all i,j E Var(Ob(Z)), (f : i J) e Var(Ar(L)),

t(i) e Wfto(L) , r = rI (i = a(r)) e Var(Rel(z))

TV0 (f(t(i))) = FV (f(t(i))))

= TV.(r0 [t(1) = FVo(r1 t(i)])

= TVo(t(
l )) = FVo(t(i))

Hence,

BnV,(f[t(i)]) = BnVo(rit (1)]) = BnV0 (t(i)) = z

The class of all formal sentences of z is

Sento(Z) ? Wfex,(L) and FV,(?) 0)

= (P I w e Wffo(L) and FV,(?) = 0)

where the class of all open expressions of t is

Openo(L) - {, I P E Wfexo(L) and BnVo(?) = 0)

2 Wft,,(L) U Wfato(L)

The sequent class for Wff0 (z) relative to the special

p
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predicate symbol I- can now be formed. This class is the basis for
investigating all additional theories:

Seqwff (z)(Z) = Wffa(z) x (}-) X Wffo(L)

((,P I- 9) I ?,a e Wffo(z)}

In summary, the basic syntax of L has been established and -

this point - we may express Z as

L = ThsreynoT
Ih syn, (L), Var(L) ; WfexO(L), FVo(L), BnV,(L))

with

Ser.(L) l () n De(Th (L))

as the class of deducts or theorems of interest relating to

II. Expanded syntax of Z

In general, we may wish to add more structure (or in fact take
away structure) to L in the form of an additional theory, say
ThK(Z) . However, this theory may well entail further operations

and constraints on them. Hence, L must be expanded appropri-

ately in order to serve as a basis for the extended language.
Specifically, let ThK(L) be a theory concerning logic, set

foundations and quantifications, which will be treated in the next
section. Define

Ax snK(L) U Rul snK(Z)AsynK(c U synK~z

Ax (z) U Rul (L)
syn0  syn0

U RI,syn,18 U ... U RI,syn,36

where as before each Ri,syn,w  has a concrete counterpart in Appen-

dix 2 at the end of 2.4.
Then analogous to the development in (I), we obtain for the

expanded syntax theory Th synK(L) (Ax synK(), Rul syn())

De(Th synK()) . In particular, the free variable total variable and

bound variable maps now extend to:

For any n a 1, ?, n1... ,n E Wffo(L)

q E Quan(L), 1 e Locn (2) , i e Var(Ob(L)) , x(i) G Wfvi(/)
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n
FVK( (-I? .. I n) n U FVK(T )

n
TVK(7 (P1, .... )) = U TVKW=1

FVK((X P)) FVK(q x )(I))

= FVK(7) A FVK(Xi)

BVK((x I P)) = BVK(qx() )(?))

=(x (I ) U BVK(r)

TVk({x MI)) TVk(qx(i)(7)) = TVk() U FVk(KX(i)

We abuse notation somewhat:

(ixj) (i) U)
(x x ) = (x , x(1) etc.

Thus, we now can let the formal language be

z synK (Core(L), Th synK(L), Var(z), WfexK(z), FVK(Z), BVK(L))

with

SegWffK() (L) 2 WffK(L) x (L )XWffK(L)

and

Serk(L) = SeqWff ()(L) n De(Thsyn ())

Note that it is assumed, without loss of generality, that
all pertinent symbols, including function symbols constituting
FuncSymb(L) (and its subclass of distinguished function symbols) and
rar(L), are given in the beginning of the construction of I , al-
though relations between them and their compounds and substitutive
forms may or may not be present through Th (L) or evensyno

Th (L) . In any case, not due to any structural changes, but

rather to the class of well-formed expressions apparently shrinking,
because of further identifications of forms through the added theory
ThK(L) , we employ the subscript K in WfexK(L) , WffK(L) I

WfatK(t) , Wfv(K)(Z) , etc. However, again abusing notation, we

assume that we can identify all compound wff's with appropriate
elements in Var(Rel(L)) and all such wft's with these in
Var(Ar(L))

III. Added theory for L for logic, set foundations

and quantifications.

Define the added theory ThK(L) =(AxK(L), RuIK(L)) by
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AxK(L) U RulK(L) L R I,Th,3 u ... u RI,Th,24 SeqWff(t)

where again each R I,Thu has an obvious concrete counterpart given

in Appendix 2 at the end of section 2.4.
We then define the full expanded theory for z as

Th synKK(L) = (Ax synKK() , Rul synKK(L))

where

Ax synKK(L) U Rul synKK() = Ax synK() U Rul synK()

U AxK(L) U Rul synK(L) = RI,syni U ... U Ri,syn,36

U RII,syn, u .. U RII,synii

U RTh,O U U RTh,24

Hence, finally, we define the full expanded formal language as

LsynK K = (Core(L), Th synKK(), Var(L), WfexK(L), FVK(L), BVK(L))

with the general deduct class and deduct-of-interest class given as

De(ThsynKK(L)) = span(Thsyn KK(")

and

SerK(L) = SeqWff (1 )(L) n De(Thsyn K'K
.OW

With this additional structure (summed up by Th synK(L))

the deduction category Var(L) becomes now a formal topos. This is
a basic algebraic structure for semantic evaluation. Furthermore,
this structure can always be imbedded in a natural way into a topos
which plays a key role in set theory. (See section 2.4.)

IV. Additional remarks

We may wish to consider additional concepts for L For
example, we may wish to add, e.g., the concept of double implication
e= or alternate denial or other quantifications or logical con-
nectives, without defining them as primitive concepts (such as,
elements of Arr(L) , here) which are described by additional axioms
and rules added to ThsynK,K(2) . This can be done by defining

these operations eliminatively through those already established
through L . For example, (= Rel(L) x Rel(L) Rel(L)) is de-
fined most naturally as
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= (.,. ) d &( (.,..), = (..,.))

(composition)

which through the category theory structure of Core(L) is a legi-
tamate member of Arr(L) , as are & and = (See for example,
Coste (41], p. 10, where T , F , , e , V 3 can all be defined
eliminatively through only v(=or) A(=&) x fl {", I) I " ['']
o -) Note also that, compatible with the intuitionistic-like struc-
ture of ThsynKK(Z) , we can define negation nt directly through

= and formally as nt(.) = (.) * I (.) . See also the Godel-
Intuitionistic Logic in section (C), 2.3.2 and the remarks on
Fuz(H), etc. in section 2.4. (See also Maydole (172], p. 13 for
other examples of eliminative definitions.)

An example illustrating the form of a well-formed formula and
well-formed terms:

Let : i,j,k e Var(Ob(z)) ; (f : i - j) , (g : j x j - k)

(h : j -# J) e Var(Ar(L)) ; x (  E Wfv I(L), x (j ) ,  z (j )  e Wfv.(L),

z (k) E Wfvk(), y(i) e WfvI(L) ; r k tk' wk e Var(Rel(L)) with

o(rk) = o(tk) = a(wk) = k ; and consider nt & , and e Loc(L)

Assume throughout that S(x (1 ) ) = S(x( )) = S(z ( ) )  S(z(k) )

S(y(i)) = t 9 i x j x j x k x i , and hence, x(i) = x(i)

ProJl(i)(t) , x ( j ) = xt(J) = proJ 2 (j)(e) , etc.

fox(i) = f(x(')), hofoy ( ) 
= h(f(y(I))) E Wft (z)

g(<~x(I)),h(f(y(M)))>) cc Wftk(Z ) ,

rkig(<f(x()), h(f(y(i)))>)] Wfat(r)e,

with signature t

Sk[g(<z( , x( >)] G Wfat(L),

with signature t,

Wk[z(k) e Wfat(L)

with signature Then, in turn,

((r kg(<f(x(i)), h(f(y(i)))>)] & nt(s kg(<z(i), x( )>)]))

wk z(k)1 ) e Wff(L) Indeed, ? e Open(L) , with a(yP)

Then note that

9 V(i,Jxjxkxi,r) - (Vx(H))(P) = (Vx(i))r [Idt]

(Vx(1 )) V[<x(i), x( , z(J) , z (k), y( ) >J C Wff(L)
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with FV(9) = (k) ((x)) 0

Also, note that

dt Y(J,xkxi, 3(j,ixjxkx, nt(skg(z(J), x(J)])

-(Vx(J))(3z(J))(nt(s k~g(z( , x(J ) ) e Sent(f)

Also, note the use for o(s) = x j

w(i) dproj (kxixj), w(j) d proj (kxixJ) g projk(kxixj)

A (Vk)(ixj, r[prOjixj (kxixjJ)])

= (Yw(k))(r[<w() , w(J)>][Id kxij)

- (Vw(k))(r[w(i), w(J>][<w(k) w(i),w(i)>])

d(vw(k)) (i) (j) k)

etc.

(See Appendix 2 at the end of 2.4 for further details concern-
ing the properties of V , , , e , " [") , (" '") ,etc.)

V. Summary of structure of L

A formal language may be developed in two stages, stage 0, the
syntactic level and stage K, the expanded level (or more generally,
for b a K).

Let subscript b = 0 or K , with b = 0 referring to the
basic level of development of L and b = K referring to the addi-
tional level of development Then, denoting

d
syn0, 0 syn

Th dTh
syn,0 svn,

Ax d Axsyno , 0 syn,

Rul d Rulsyn0 ,0 syn

we have:

0
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Lynb (Core(L), Th snbb(L), Var(4), Wfex b(L), FV b(L), BlV b(L)).

Sort(L) = {Ob(L), Ar(L), Rel(L)),

Core(4) = (Ob(Core(L)), Ar(Core(L)), the type-category,

Obj(L) = Ob(Core(t)) = Typ(L) =span(Sort(L), x, a2)

Arr(L) = Ar(Core(L)) = FuncSym(t)

Z Cat(L) U Foun(L) U Loc(Z) U Quan(L)

(See part I for a listing of special designated function symbols.)

Var :Typ(L) -. Ob(SET),

Var(L) 4U Var(cx) , where in particular
aeTyp(L)

Vart~b(f)) =

Var(Ar'LC)) = f..,..h..} with f =(f i - j) ,etc.

Var(Rel(.L)) =r,.s t..} with r =r. etc.

Var(L) = (Ob(Var(L)), Ar(Var(L))) , the variable object-arrow
category,

Ob(Va, _')) =Var(Ob(L))

Ar(Var(t)) = Var(Ar(L))

Var(L) =(Var(L), XC(L)) the variable-deduction category,

%(L) :Var(L) -. Preord, the variable-relation contravariant functor.

For all i,j e Var(Ob(L)) , all (f :i -. J) e Var(Ar(L))

NC(L)(i) = (r, ri e Var(Rel(L)) , o(r,) =i)

X(L)(f) E Ar X(L)(j)'XW(i) (Preord)

with for all ri e 2.(1)(j) 1

XC(L)(f)(r) = r i f] e %C(L)(i)

Predsymb(L) = Ob' Ar' =Rel'E,, ..

In a sense, span refers to suitably well-defined operations
(determined by Th syn'b )

Termn(t) ;2 Wfter b(L) = span(Var(L), FuncSym(z))

= Var(Ar(L)) U Var(Rel(t))
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= Wfex jL)

= Wffb(L) U Wft(b)(L)

Var(Rel(L)) 2 Wffb(L) = span(Wfatb(L) ; Loc(L), Quan(L))

2Wfatb (L) =Var(Rel(Z))[Wft (b)(W]

•. [-](Var(Rel(L)), Wft(b)(L))

Var(Ar(z)) 2 Wft(b)(L) = span(Wfv(b)(L), Var(Ar(L)))

2 Wfv (b)() = 1 roj(Var(Ob(Z))xVar(Ob(L)))

2 Wfc(b)(L) = proj(Cons(Ob(L))xCons(Ob(L)))

Sentb(L) = FVb- (0), Openb(L) = BnVb- ()(0)

Thsynb'b(L) = (Ax synb,b(C), Rulsynb b(L)) I

Serb(Z) = Seqwffb(z) n De(Th synbb(L))

SeqWffb(L)(L) = Wffb(L) X ({%) X Wffb(z)

A word of caution: Unfortunately, the word "sentence" is used
universally in the literature of formal linguistics and the analysis
of natural language to refer to any (compound) form, obeying natural
language grammar/syntactics. By the Parsing Principle, this cor-
responds to some wfex (well-formed) expression in the formal
language. However, the latter may or may not be a formal sentence.
In addition, such wfex's usually have specific labels for their

individual variables, such as, x(i) = "John" and y() = "happy",
etc., as in the natural language sentence "John is happy, but Sam
likes to read". These labels indicate which individual variable
assignment map values are to be given to the free variables, as part
of the semantic evaluation of the wfex. (See 2.3.2.)

VI. Basic theorems of ThKAL:

In the following, a,b,c,d,... e %(I) for some i e Ob(C)
(c, t) a deduction category with all additional properties as
required. Equality " = " really means " "() ; s means

" :%(1) "1 We also use R. for RI ,T h ,a ' a 0,1,...,24

Theorem 1

(i) a A b S a,b - a v b

(ii) a : b iff a A b = a iff a v b b

(iII) a = b iff a A b = a v b = a = b
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Proof: (i) : R1 , R4 , 5 , R R9 , R10

(ii) if a S b , since a S a by R1 , then a S a A b

by R6  But a A b S a by (i) and hence a = a A b. If

a = a A b , then since a A b A b , by (i) , R 2  implies a S b A

similar proof holds for the remainder.

Theorem 2 Symmetry

a A b = b A a

Proof: From Theorem 1 (1), and R6 , a A b S b A a and by arbitra-

riness of a and b , b A a -5 a A b and hence, a A b = b A a

Theorem 3 Idempotence

a A a = a= a v a

Proof: By Theorem I (i) , for b a , a A a : a . But since
a S a , a , by R 6 , a & a A a Similarly, use R8  to obtain

a = a v a , using Theorem 4.

Theorem 4 Marginal properties

a A T =T A a =a

a v T = Tv a =T

a A I =IA a 1

a v I= v a =a

Proof: Use R3 , 7 etc.

Theorem 5 Associativity

a A (b A c) = (a A b) A c

a v (b v c) = (a v b) v c

Proof: By Theorem l and R4 ,a A b S a, (a A b) A c < a, c

Then R6  implies (a A b) A c S a A c Similarly,

(a A b) A c b A C . Hence by Theorem 3,
(a A b) A c (a A b) A c) A (a A b) A c) 6 (a A c) A (b A c) S a A
(b A c) . By arbitrariness of a,b,c, we can reverse inequality
with a and c interchanged.
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(iii) Use part (ii), applying 2

(iv) Note that (iii) above applied to Theorem 1 (i) yields

nt(a v a) & nt(a) , nt(b) S nt(a A b)

and hence by R6 and R8

nt(avb) S nt(a) A nt(b)

nt(aAb) Z nt(a) v nt(b)

Finally, note that by part (ii) above, assuming distributivity

(see Theorem 8)

nt(a) A nt(b) A (avb)

= (nt(a) A nt(b) A a) v (nt(a) A nt(b) A b)

: (nt(a) A a) v (nt(b) A b) = ± v . = I

Hence, applying R 1 2 :

nt(a) A nt(b) A (avb) I I

Hence,

nt(a) A nt(b) : nt(avb)

Similarly by considering the above proof for a A b replacing
a v b, R1 2 again yields the desired result.

Note: Since A and v are associative and symmetric, they
can be extended recursively in the obvious way, unambiguously, to an
arbitrary finite number of arguments, and in turn, formally to any
number of arguments.

(v) Consider T = nt(l) = nt(a A nt(a)) = nt a v nt(nt(a))

a = a A T = a A (nt(a) v nt(nt(a))

= (a A nt(a) v (a A nt(nt(a))) = a A nt(nt(a)).

Theorem 6 Non-decreasinci

If a S b , then a A c I b c , a v c S b v c

Proof: By Theorems 2, 5, 3,

(a A c) A (b A c) = (a A b) A c = a A c

Then by Theorem I (ii), a A c S b A c
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Theorem 7 Negation propsrties

Define nt(a) a ±

Then

(I) nt(T) =. ,nt(l) = T

(ii) nt(a) A a I (Law of Excluded Middle).

Hence, if a~ b

nt(b) A a =I

(iii) If a :9 b *then nt(b) 5 nt(a) (Nonincreasing).

(iv.) nt(a v b) =nt(a) A nt(b) S nt(a)

nt(a A b) nt(a) v nt(b) (DeMorgan's Laws)

(v) nt(nt(a)) a , In general,

nt(a) v a 0 T , in general,

but:

nt(a) v nt(nt(a)) = T

Proof: (i) Use R etc.

(ii) Use R1  , noting b Sb ,±S±and hence

b A (b * I) S I1 then use, e.g. , Theorem 6. Then by Theorem 1
(ii), a _- nt(nt(a)).

Theorem 8 Distributivity

a A (b v c) =(a A b) v (a A C)

a v (b A C) =(a v b) A (a v c)

(Proof: Since (a A b) S (a A b) v (a A c) and (a A C) :S (a A b)
V (a A C) , R 8  implies a A (b v c) S (a A b) v (a A C) .The con-

verse procedure Is easily verified.)

Theorem 9

(I) a A (a b) I b (a b)

(ii) If a b , (a b) =T

(Proof: Use R 1and R1



40 Goodman and Nguyen

Remarks.

Thus, under Thsyn KK(L) , an intuitionistic-like theory, it

follows that operators A and v will have the properties of
general t-norms and t-conorms, respectively, and nt is a general
negation (see section 2.3.6) with the added structures of idempo-
tency, DeMorgan and distributivity - all properties that ordinary
minimum and maximum have.

It may be desirable to replace Th synK(L) - erps by a

less restricted theory-where A is replaced by & being a t-norm,
v by or , being a t-conorm, nt (and hence * ) by a general ne-
gatlon (and hence implication) operator. However, in this case, the
formal topos structure will no longer be valid.

2.3 Semantic evaluations.

2.3.1 Preamble.

Two schools of thought arise regarding the semantic or truth
evaluation of a formal language. The platonistic approach inter-
prets the semantic evaluation as a statement about the real world.
On the other hand, the formalistic approach allows no such inter-
pretation.

Despite the setbacks in platonism ('he advent of non-Euclidean
geometry, discovery of paradoxes in nalve set theory, Godel's un-
certainty theorem, Heisenberg's uncertainty principle, etc.), the
philosophy has a great deal of appeal. This is because of the
continuing egocentric viewpoint that Man has with the rest of the
universe. Hence, we continue to persue knowledge and "prove"
theories (within possibly inconsistent systems) and attempt to
relate these concepts to our surroundings.

2.3.2 Basic evaluations of formal language.

The structure of a formal language L has an given in the
previous section (2.2). In this subsection, we kpresent semantic
evaluations of z . These evaluations are all carried out within a
deduction category framework. If L has enough structure, (such as
in the form LsynKK - see 2.2.2), then L may be further evalu-

ated within a formal topos. Since a construction can be carried out
showing any deduction category with some additional structure (in
particular, a formal topos) can be imbedded within a corresponding
category (or topos) (see Appendix 2 at the end of section 2.4), the
above semantic evaluations of L may be naturally thought of as
being within a category - or topos. (Compatible with this, we can
identify any ordinary topos C as a formal topos (C,Sub).)

Since a semantic evaluation of z may be thought of as an
interpretation of L , there are (in fact, infinitely) many in-
terpretations of L, which, although certainly valid within the
very general and encompassing structure of a deduction category
(including essentially all systems of our interest), may not hold
within the much more restrictive form of a formal topos (or topos),
even if L has sufficient structure. For example, in a given situ-
ation, it may be more appropriate to interpret the logical connector

& " (in Loc(z)), not as a minimum operator but as a product or



Symbolization and Evaluation of Language 41

more generally as a t-norm operator. (See section 2.3.6) In par-
ticular, (see Appendix 2 at the end of 2.4) it follows that rule
RITh,6 is violated, in general, unless A is a minimum type

operator. On the other hand, we may still wish to retain - at least
formally - the same evaluation procedure, as if a formal topos were
present. We will apply this principle to the important case of
general logical systems (section 2.3.5), the cornerstone of the
approach taken in this text to the analysis of uncertainty, and in
particular, to the combination of evidence problem (see Chapter 8).

We can summarize the role of natural language, formal language
and semantic evaluations in the analysis of uncertainty as follows:

Natural language can be used as the vehicle to express cogni-
tion explicitly, although, often somewhat vaguely. (But keep in
mind that all "rigorous, mathematical" concepts are, by definition,
expressable in natural language.) Through the Parsing Principle,
all of this is translated into a formal language. Thus the problem
of uncertainty or combination of evidence being considered concern-
ing an unknown parameter - such as "How old is Charles?", through
all the information supplied, including statistical data, linguistic
information, and general inference rules that are applicable - may
be modeled at first within a formal language structure. (See
Chapters 8 and 9 for further details on how such problems may be
treated.) Then a class of appropriate semantic evaluations must be
chosen to determine the truth content of all of the information as a
whole, and in particular, that for which projects to the unknown
parameter. First, we choose the class of possible semantic evalu-
ations upon the relevant formal logical connectors Loc(L) - such as
nt (not), & (and) , or, if ( ) then ( ), etc. - and relevant for-
mal quantifiers Quan(L) - such as v (for all), 3 (there is),
Mo (most), etc. This is the logic for the problem, i.e., a col-
lection of semantic evaluations having in common a particular
evaluation upon Loc(L) U Quan(L) is called a logic. (See 2.3.3.)
Next, we consider also, in effect, a subclass of semantic evalua-
tions upon Foun(t) , the set theory connectors s - membership,

- equivalence of sets, etc., which have common values and which
are compatible with the logic chosen. (See 2.3.4.) In addition, we
consider the class of semantic evaluations upon the basic "objects"
involved, yiediing the universes of discourse or semantical domains,
such as the set of all men, the set of all ordered pairs of numbers,
one representing heights of women in inches and the other weights in
lbs. (See the development in this section for details.)

Also, in conjunction with the above, we must determine the
appropriate class of semantic evaluations upon other basic relations
(corresponding to predicates or verbs in natural language) and wff's
(well-formed ) formulas, formed as compounds (or strings or the
spanning) of basic relations together with the substitution of
various functions (or terms) within the relations. The semantic
evaluation of relations yields dispersions or membership functions:
in general, numerical-valued functions upon their signatures which
become their corresponding universes of discourse through the
semantic evaluation. If any universes of discourse have as
elements, "events" or equivalently sets of more primitive elements -
such as in the case of probability measures and Choquet capacity-
type measures, where for the former, a given universe of discourse -
corresponding to a given probability measure (there may be many
probability measures for a given problem, and hence many universes
of discourse) - consists of a-algebra of subsets of a given set or
equivalently a Boolean algebra of events, then we call the corres-
ponding dispersions uncertainty measures.
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Finally, we evaluate semantically all the relevant individual
or particularized variables from the universes of discourse - such
as "Charles", "age of" and, in turn, by appropriate substitution,
obtain the desired numerical truth values.

I. Semantic evaluations within a deduction category.

Let (C,%) be a given deduction category, with finite products
and having possibly additional properties when needed.

Define a typical partial semantic evaluation (or structure or
assignment) map from Core(Z) U Term(L)) into SET , denoted sym-
bolically by 11 II (e,% ) : (Core(z), Term(L)) -* SET where

1II l(C,% ) : Core(L) - SET is made into a functor between categories

Core(z) and SET (Unless stated otherwise, both L and (C,%)
are fixed, and consequently, we will drop the subscript (C,%) from
the semantic evaluation map from our writing, but not from our
thoughts! Later, another subscript W will be used, but for a
different purpose.)

Consider first the three distinguished objects Ob(L) , Ar(L)
Rel(L) 6 Ob(Core(L)) :

The class of universes of discourse or semantical domains is:

IIOb(L)II d IVar(Ob(L))Il
d

where typically lil e Ob(C) , and hence

11 11 : Var(Ob(L)) -# Ob(C) , with

1Var(Ob(L))Il = (Ilill I e Var(Ob(L))) S Ob(C)

Similarly, the class of arrows between the universes of
discourse is:

IlAr(L)Il 9d ,Vat(Ar(z)),I
dI r( ll = (IIla(rl)...)g! .. ll ..

9 Ar(C)

and the class of relations on the universes of discourse is:

IIRel(L)II d lIVar(Rel(L))II

S Rel(C,%) - U %(a)
aEOb(C)

Furthermore, let

ISort(L)IS d (IOb(L)II, JAr(L)II, IRel(L)II)

In turn, for any a e Typ(L) , define

hal = IVar(a)I = (Ial a e Var(a))
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)ITyp(L)i = (Hll I a e Typ(L))

= span(IlSort(L)H ; x , 12)

where x and f2 are cartesian product and exponentiation, if
needed, for C .

Thus, e.g., Ob(l) x Rel(L) e Typ(L) and

11Ob(L) x Rel(L)II = 1Ob(L)II x lRel(L)I , etc.

Consider next the semantic evaluation on FuncSymb(L) (the
arrows of Core(t)) :

For any a,p E Typ(L) and F - (F : - /3) e Ar (Core(L))

choose some

11FII = (11FII : Hall - 11/11) E Ar llall,HlH (SET)

i.e., IIF11 is some ordinary function from the set ill to the set
11/11 , where for any a e Var(a) and hence F(a) e Term A (L)

iIF(a)l1 d IIFII(lall) , noting Hall e Hll = lVar(a)ll

Also, for any (F : a p3) , (G : /3 - i) e Ar(Core(L)) , and
id a - a in Ar(Core(Z))

IIGoFI = IIGIIIIoIIIFII ,

lidll = idllall

where the composition and identity, id , in Core(L) become or-
dinary composition 11oli and ordinary identity id for SET From
now on, we abuse notation and let 11011 = * , etc.

Obviously, the partial semantic evaluation maps of most
interest are those which are compatible with Th (L)syn o

Specifically, we say 11 11 is a model of Th (L) , iff by defini-syno

tion, for any (r 1 9) e Ax syn (L) U Rulqvn (L) , II'FII II-II 11911 holds,

where, e.g., IIII is ordinary = , for e (Ob' =Ar' =Rel and

Hell is ordinary e
It follows that the same property holds for all

( 0 i 0) e De(Th syn(L)) . (This definition of a model extends to

any given theory and formal language in the obvious way.)
We now assume that II II Is a model of Th (L) within de-syno

duct ion category (C,%)
Thus, we have:
For any f 6 Var(Ar(L)) , we may write f = (f : i - J) e

Ari j(Var(t)) for some ij e Var(Ob(Ll) and hence (from

Th (Z)) , S(f) = i , B(f, = j , where S = (S : Ar(Z) -# Ob(L))s yn
B = (B : Ar(L) - Ob(L)) .Then

I
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11 f ll = ( 1l f 11 : Hl i ll - 1i J 11 ) s r l i ~ l j i €

where

ISdI = (11S11 :UVar(Ar(L))i -. IlVar(Ob(L))i) ,

1iB11 = (1IB1I IlVar(Ar(L))1i - lVar(Ob(L)) ) ,

IlId = (IlIdil : IVar(Ob(L)}u -# IlVar(Ar(L))ii)

I1proj:I = (1lprojl : IVar(Ob(L))I x lVar(Ob(L))I -# IlVar(Ob(L))II)

are the source (or domain), codomain, identity-making, and
projection-making maps for C , respectively. Thus,

IIS(f)II = IIS1i(I1fII) = Hill

11B(f) I = IIBlt(IIfit) = 1ijll

For any i,j e Var(Ob(z))

IIId(i)l = Idi1ilI ,

an identity arrow Idiiu :lii, llHill of C , and for any
f,g G Var(Ar(L)) with S(f) = S(g) , i.e.,

f = (f : i -+ J) and g = (g :i k)

say, then

lproj1 (i,j)(fxg)lI

= 1proj 1 (It ill x IIJit)(Ifit x ug )

= uIIfll

Similarly, it follows that II II is compatible with all axioms
and rules (from Th syn(L)) characterizing the functional symbols

S , B , o , Id , proj , x , < > , 0 ,and •[..]
In particular, consider again lRel(L)It :
For any r e Var(Rel(L)) , we may write r = r(r) or r = ri

i = a(r) = (r)
Now, the function symbol a = (a : Rel(L) -4 Ob(L)) has the

evaluation

1lail : 1iVar(Rel(L))i1 - lVar(Ob(L))u

the signature map for (C,%) and

ii*. .. ]l : uVar(Rel(L))ui x ilVar(Ar(L))II -+ tlVar(Rel(L))ui ,

the substitution map for (C,%)

i (ri ) i = iHill = lall(lrii il)
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For all (f j ", i) , (g k - J) e Var(Ar(L)) , o(r.) i

o(r11 f]) =

o(r 1 [f]Cg]) o(rI[fog]) k

o(Id(o(rp))) = a(Id(i)) = I

If J( = Ilo (r i [f) )ll = (lri ~f)l = o (I(I )(r1 ) .

1kvl = la(ri(f] [ g] )ll ilall (lri[fog]Ill) = 11011 ( (lIfllolgl ) ) (Irii))

ilII = lia(Id(a (ri)))II = I 1 Ilo ~ ) = IIaIl(Id~l }

noting

lrL[f]II = (.lfl)(fir 1 11 ,

%l(llfll) : (I1i11) -4 % (11311 )

Clearly in establishing the functor 11 11 Core(L) - SET , we
have also established 11 11 as the functor II II Var(Z) - C

Next, we consider the predicate symbol l' . representing

(through RI,ThO - RITh,2 ) a partial order over Var(Rel(L))

Define

I£11 L -SPreord

where, for any I e Var(Ob(z)) , and hence ill cc Ob(C) and
%([Ill) e Preord,

But from the properties of SPreord here, it follows that

RI,Th,O - RI,Th,2 are all realized compatibly:
For any I,J e Var(Ob(Z)) and r. , s i , t1 e Var(Rel(t))

with a(r) = O() = a(ti) = i , and (f j -. i) e Var(Ar(L))

(1) If (r I-5 ) (abstractly) then

lIr %( ll)Sj i ,
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(iii) If (r 1 '-L Sj) ,(si 1,-t t I) ,then

11 r 11Sa isl Sa Ht 1 1

and

r I- t

In turn, It follows that (11 11, r1 V) ar(L) -* (C,%) is an

arrow between the two deduction categories (see 2.3.3 (B)). Since
11 11 Var(L) -0 C Is already a functor and r~ 111 Ob (Var (L)t -

Ar(Preord) ,where for any i e Ob(Var(L)) =Var(Ob(L))

r, ,(I) I Ar,(Lt)(,)'(IIII)(Preord)

where for any ri e X(L)(i) , (a(r,) I)

r 1 1( )(r ) d Hir HI

is a natural transform

since for all i,j s Var(Ob(L)) ,(f j -*I) e Var(Ar(z)) ,and

hence

I fill lijii -0 H ill

and therefore

%Irl fll(i 1

Next, consider 11 H1 over Wfex0 (Lt)

Again noting that (due to Th (L))( WfexO(L Q Wfter 0 (L)

the evaluation of 11 11 over Wfex.(L) , and hence over Wff.(L)

Wfat.(L) , Wft(0 (L) , Wfv(0 (L) and Wfc ()() , become a special

case of determining 11 11 over Wfter0 (L)

Thus:

II Wfc ( )(L )l H o il 1 i, Ill 11. .
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whee IIa 11 1b1III ... are terminal objects in c

where typically

()= () proj (ixkxj)

x ()= x k) = projk,(ixk) e Var(Ar(L))

lx k 11= 11projit1 1 i .iflxIikiI ) e Ar(C)

where typically, (f :j -# k) , (h :k -# 4), (g e x I .J)
Var(Ar(L)), y(i) = y (j) C-Wfv W(L (k) , Z(k) G (I) X

ixkxj J ixk vk(L

X~ik e Wfv 1L) , i,j,k,t qe Var(Ob(L.)) and

11 fI Ar 1 ji1  ukil (C) , lIhI 4 Ar 11kil , 111 ) 11 Ugl e Arie x,, 1.1 II 1jI(0)

Ilf(y~j))lII lfilolly jiI e Ar 11 1 1iix kllxiijil ,ikil (c

lig(<h(z~k ), X M>)H

if Ugi (<llhil o iiz (k)11, lx ' 1>) 4 Ar1 , 1 , 1 I~Ix I I .- jil(

where typically, g , h , z , x ,y are as above and

tjC e Var(Rel(L)) (o(t jx) = j x kc)

lit ( g(<h(z (k)), x'i)>) x f(y(j)flI

= 1(lg(<h(z (kc) ), Xe'>) II X lf(y(i))II) (litjxk 11) e Re2(c,%)

This completes the specification of 11 11 over Wf ex, (I
noting that because only Th syn () Is present, Ii il over

Wff,(L) ..4 Wfat,(L) , In general, Is arbitrary fixed so that for any

r 4 Wf f,(L) I- Wf at,,(L) , lIrll e Rel(c.1) with lloll(ll?)') = l(Fl

etc., as Is compatible with Th sn (Z) only.
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We also obtain

IIFV lI, IITVQII, UBnVII - IlWfex,(L)II -- 9(IIWfv0 (L)II)

and in turn, IISent,(L)ll , UOpen,(L)IU in the obvious ways.

Thus, in summary, we can write the typical partial semantic
evaluation model symbolically as

IIII : Z - SET,syn0

where

1 I1 : Core(Z) -* SET is a functor,

(iI II, rl 1 ) Var(L) -# (C,%) is an arrow,

fat' = lVar(a)II , a e Typ(L) ,

IIVar(Ar(Z))II U llVar(Rel(L))l = Ar(C) U Rel(C,:)

= IIwfter,(L)Is - span(IIVar(Typ())II, "FuncSym()II )

2 IlWfexc(L)II = BlWff,(L)ll U IIWft( 0 ) (L)I! ,

ilWfatc(L)ll = span(iiVar(Rel(1))ll x lWft(b)(L)! ; ((II..Il)(.ll)) ,

IIWftO(L)Il = span(IlWfv(0) (L)II; !iVar(Ar(L))Il)

= proj(ilVar(Ob(L))l x lVar(Ob(z))II)

2 proj(IlCons(Ob(Z))! x ICons(Ob(L))I)

if Th sync(z)[ = (( 17 11 11 0 1911) ( (? 9 0) e Th syn. ( )

))De(Th syn(Z))hI ((1711 ll i l 11911) 1 (1P - ) E De(Th syn( )) ,

etc.
Note, that the evaluation of any 7 Q Wfex,(L) , depends on the

evaluation of TVo(P) - which is a collection of projections. Each

such projection becomes a projection in the sense of category C
(under the evaluation), in a natural corresponding sense. However,
this is not enough to specify an actual realization. For example,
let ri E Var(Ob(L)) and

X = ( (Xk±i  = projI(k x i) e WfvI (L) Z Var(Ar(t)) , yielding
d [x(I) (I7=rpx ] e Wfato(L) (with signature o(ritx() ]) = k > i)

0
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Then, as we have seen, IItI1 = %(tLx(1)II)(iIr i1) , where

llx(l)iI = proj11lill (ilklxflill) e Ar(C) and ir 1I e Rel(C,%) (with

Ilao(1ril) = lil , etc.). However, if we wish to further evaluate

1II for particular possible domain values or 11x (1), (relative to
firi1 , of course) , we must consider some kind of constant arrow in

C which in some sense has its constant value in lill E Ob(C)
To abstract the above need in a general setting, we will assume

the following for deduction category (c,%) :

(w) For each a e Ob(C) , there exists (possibly, many) termi-
nal objects 1 a such that the arrow (f1  : Ia + a) e Ar(C) is a

a
subobject of a (i.e., a monic - see Appendix 1 at the end of 2.4).
Denote the class of all such arrows (as a runs over Ob(L)) as
T(C) . In turn, consider some collection of interest A c Wfexo (, )

Then define a mapping (again as for 11 1 , in general, there are an
infinite variety of choices) called the individual variable assign-
xent map

: FV. (A) ( )

such that for any x(i) e FVo(.) (x(i) G Wfvi(L) , etc.)

W(xM ) d f

for any cho-ice of f 1, iii

Finally, the full semantic evaluation of L together withs yn,

the selected collection of well-formed e.-,r ssions in z is

denoted as

II iI -. C
'W syn

or simply (where L = L is understood)syno

it should be noted that many semantic evaluations indeed satis-

fy condition (w) . Using the previous example of ? = rtx ( ]I

we note the following interpretations for deduction category (C,'z)
(see Appendix 2 at the end of 2.4):

(i) (C, =(SET, Cub)

, I ~~~~~~IL. n ]uh r l ]mum m mm nl mnmm
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Then, noting that Hi1ll e Ob(SET) and here l 6 lill may be

arbitrary, Ilr <: i rill , and without loss of generality we have

fll : 1l il lillillI , a one-point map, so that

II = Sub(f (li ) ( r11)

= f- ( I ril)
Ir1 If

= I 11 1 iff 11I i Ilr 1ll

1 0 iff 1"1 i i 1

establishing when a point ll is in the relation lrill or not.

(ii) (C,%) = (SET, H , H being exponentation, where
H = [0,1] Again, Hi111 e Ob(SET) and 1i e ill, arbitrary,

f as before. But here hlr il 6 H Hi11  andfill illi

hlIl = H" (f1  ll ) (ilr1l 1)
11 ill

= I I(r Hll( i ) l

establishing, in a general sense, the degree to which assignment

II ill of X (  is compatible (or is "in") with the evaluation llril1

of ri

Again, to reiterate, from now on throujh the remainder of the

text, the semantic evaluation II ii Z yn. (C,%) is always as-s yno
sumed to be a model of Th syn(L) When the structure L = Lsyn,

is understood, we simply write iI II L -+ (C,%)
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II. The canonical deduction category.

In part (I) of this section, a formal language syno was

evaluated in a given deduction category, and, further, the concept
of models within that deduction category was treated. But note the
obvious partial converse: A deduction category, namely

Var(L) = (Var(L),X(L)) , is always present within L (seesyn0  se

2.2.2) so that II ii : s - Var(L) is a canonical model -Tar (L) syno

and Var(L) can be considered a canonical deduction category -
defined as follows:

i) For any a E Typ(Z)

loall = llVar(a)l = Var(a)
Var(L) Var(L)

(ii) 1tWfter,(L)ll = Wftero(L) , etc.,

(iii) Ordering is the same. We can let (r s s) = (r -, s),

for all r,s G De(Th synbb(L)) , b 0,K, etc.

Thus, essentially it It : L -. (ar(L) is an identity-likeTar (L)

pmap.

III. Semantic evaluations within a formal topos.

In part (I) of this section, we developed a class of semantic
evaluation procedures of z with values within a given deduc-s yn,

tion category (c,%) Some of the syntactic axioms and rules (the
second level ones - Rii,syn,10 and R I,syn,1 )  involved certain

of the specially designated function symbols

(2 : Ob(L) -# Ob(L)), (e : Ob(L) - Rel(L)), (& : Rel(L) n  
- Rel(L)),

(V : Ob(L) x Ob(L) x Rel(L) -4 Rel(L)), ... ) only in a cursory way.
However, it is often important to give these additional symbols
meaning. L synKK certainly at the formal level, presents one

approach to their interpretation. In turn, the semantic evaluation
of this part of formal language must also be considered. That is,
we need additional structure on (C,%) in order to evaluate the
important aspects of set-theoretic foundations, logical ccnnectors
and quantifiers.

The additional structure for (C,%) we consider here is in the
form of a formal topos. (See Appendix 2, end of section 2.4.)

We simply extend II II : L .' (C%) to
synoII II : LsynK (e, t) (now a formal topos) over the set-theoretic
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foundation symbol class, Foun(L) = {1, G, x, (-I.. .... , the
class of logical connectors, Loc(L) = {nt, &, or, *, ...) , and the
class of quantifiers, Quan(Z) = {V, 5, .... In addition, we wish
this extension to be compatible (analagous to that for L withs yn0
Th syn(z)) with ThsynK() , i.e., to be a model for L synKK

In particular,

IFoun(L)II = Foun(C,%)

ILoc(L)II = Loc(C,1) ,

IIQuan(Z)ll = Quan(C,%)

where again, see Appendix 2 for all characterizing properties.
Note also, that analagous to part (II),

1II : n K ar(L) can be considered a canonical model

for L in Var(z) , having now a formal topos structure (a la
syn~K

ThK(L) )

In summary, we write for a semantic evaluation of LsynK

into formal topos (C,%) as

I II: Lsyn K K' . (C, )

and if individual variable assignment map w is also applied, we
write

it 11 : L sy , K _ (C,'%)

Or, again for simplicity, when the structure of L is under-synK, K

stood, we write simply

iV U L -. (C, )

and

II II : L -. (C,i ) ,

respectively.

IV. Semantic evaluations within a category or category with
additional structure, or topos.

As (1) a consequence of the universal arrow and imbedding pro-
perties of deduction categories with possible additional structure
within the generic (?(C,x),Sub) as given in Appendix 3, section
2.4.2, (2) because of the characterizing result that include, e.g.,
(C,Sub) is a formal topos iff C is a topos (see the beginning
part of Appendix 3), and (3) compatible with the basic literature,
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denote the semantic evaluation 1 11 : L - (C,Sub) as simply 11 11
Similarly, 1 11 : L - C Is a model means 11 : Z -# (C,Sub)

Is a model (for some theory Th(L)) Similar remarks hold for
II II : L C

V. Su ry

Why consider (deduction) categories and (formal) topoi for se-
mantic evaluations of a formal language?

Firstly, deduction categories are the appropriate vehicles for
the ranges of semantic evaluations of a formal language L , since
as seen in the constructions In this section, they contain all - and
in general, require no more than - the structure necessary for cer-
tain of the semantic evaluations to be models of Th (Z) . If Z

5 yno

has additional structure in the form of ThK(L) , an intuitionistic

logic-set theory, then for II II : L -+ (C,m) to be a model, (C,%)
must be a formal topos. In so many words: each topos has an inter-
nal intuitionistic logic-set theory, as displayed in Appendix 2,
2.4.2. In addition, the (generic) B6nabou and related constructions
(Y(C,%),Sub)) show that without loss of generality, standardized
and enriched formal topos forms may always be chosen for semantic
evaluations of L when L includes ThK (Z) . (See Appendix 3,

section 2.4.) Moreover, ThK(L) is sound and complete relative to

topos evaluations. Similarly, fragments of ThK(L) are sound and
complete relative to deduction categories with appropriate corres-
ponding additional structures. (See 2.3.3 (b) and Appendix 3,
section 2.4.) Thus topoi (formal topoi) and deduction categories
with certain additional structure represent generalized set theoriesin the above sense. But in addition, when ThK(L) is modified and

strengthened to Th zer() , topoi (equivalently, formal topoi with

contravariant functors being Sub) correspondingly strengthened with
additional properties, including "well-pointedness", "partial trans-
itivity", etc., are ranges of legitimate models of Thzer (L) , in a
minimal sense. (See section 2.4.2 (G).)

But again, a note of caution: Because many of the problems
that all of us deal with are data-driven or "real-world" ones, it
may not be appropriate to assume when modeling these problems at the
formal language level that the restrictive form of ThK(L) is
correct. This leads to the relaxation of topos structures - but,
not in general, category structures, for those sufficiently flexi-
ble! This is considered throughout sections 2.3.3 - 2.3.9. (See
especially, section 2.3.5.)

2.3.3 Loqics for a formal lanquage.

In sections 2.2, 2.3.1, 2.3.2, we developed first a basic
formal language C together with semantic evaluationssyn0

11 1 6) n L .. (C,%) , for a deduction category (C,%) . Then, we

expanded L to include a more encompassing theory ThsynKK L)

I
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yielding L synK and considered semantic evaluations

II iW : L y - (C,%) , where (C,%) was assumed to have addition-

al properties, in particular, that of a formal topos. Indeed, this
structure, when appropriate, leads to a most important property for
any model: soundness and completeness. (This will be clarified
later in this section.) ThsynK,K as mentioned previously, may not

be the appropriate theory for a given situation and hence should be
replaced by some Th syn,K,(L) Furthermore, (C,%) need not have

a formal topos structure. Indeed, it will often follow that in
order for models 1 1 : Lsyn K' .# (C,%) to exist, (C,%) may have

to have a very different structure from a topos. (See, e.g., sec-
tion 2.3.5 where general logical systems are considered as well as
this subsection.)

Although in this section we first present some basic properties
and results for formal languages and semantic evaluations in general
- depending of course on the choices of Foun(L) , Loc(L), Quan(L) ,
and the corresponding theories - the emphasis will be upon logical
theories and corresponding semantic evaluations, i.e., logics. That
Is, roughly speaking, a logic is a collection of semantic evalua-
tions which have the same evaluations (or "trace" of evaluations)
upon Loc(L) U Quan(L) . Similarly, a set theory "system" (there
being no term in vogue for the analogue of "logic") is a collection
of semantic evaluations which have the same evaluations upon
Foun(z) as well as usually upon an associated set theory and com-
patible logic. (See 2.3.4 for some set theory considerations.)

(a) Basic definitions

Let z be a fixed formal language. We denote generically
(,1) as any deduction category and 1 IIW : L -. (C,1) as any

semantic evaluation map. Using the notation of 2.3.2 - but omitting
all unnecessary subscripts - we present a list of relevant basic
definitions involving logical considerations:

For any i e Var(Ob(L)) , define

dWff (jL() {I IV E Wff(L) and a(?) = i)

(i) For any ii and any zl,Z 2 r Wff() (L) , we define

z1 z 1 2 iff1 2

1 l 1 1 (I e  Z 1 l(1) lIZ211 {11y 2 11 2 e 2 )

i.e., for all e1 ZE1  and all 2 e z2,

? I b ?2 11, which is read " logically (or
1 £l(Ob(C))1 2 loial 1o

materially) Implies z2 , relative to II " or " z2  is a

logical consequence of Z1 for II II ", or "the sequent

(Z z 2) d ((V I 1 2 )pV 1 e Z11 r 2 Z 2) is valid for 1i II ".
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(ii) For Z ! Wff(I)(Z) and given II 1l , we say " Z is

satisfiable by it i ," iff

.z.1 = 11T (i) 11 = 11 T .(11 ill

Thus,

(T 1 10 1 Z)

and equivalently

(Z1  ii1-i Z) , for all Zl a Wff(L)

We define compatibly

It . (Z) iff (T ti Z) , i.e., Z is satisfiable by II II

Note that many authors (see, e.g., Maydole [172)) define va-
lidity in a weaker sense than here: ( 1 l w2) is valid for it 11
in the weak sense iff (VI satisfiable for II II implies ?2

satisfiable for I II ). Whenever we discuss validity and related
def!n-tion3 -nd results of such authors, the term "weak" will be
appended. On the other hand, Zadeh's "fuzzy logic" (e.g., (280]) is
a semantically based theory, where deduction and validity coincide
with the concept discussed here. (See also section 2.5.)

(iii) For Z 9 Wff(1 )(L) and X , a class of II Ii's , we say

Z is a tautology with respect to X iff for all II II E N , Z
is satisfiable by if II . We say T e Wff(1 ) (Z) is contra-

dictory w.r.t. X iff llPI1 = II1(i)11 for all II II e X

(iv) Consider now N 1  the class of all II II's Then X1

decomposes into a disjoint exhaustive partitioning (union) of
equivalence classes L , such that for any such L and any

II tl (1) , I if (2) e L , 11(1) and ii 11(2) coincide over
Loc(L) and Quan(L) , the latter, for also all individual
variable assignments w . Call each such class of I 11 I's a
logic for Z . Specific examples of logics are given in part
(C). We will alternatively use the notation Logc 1 I (L) to

indicate a particular logic.

(v) For any N , a class of II I's , and any
ZVZ 2 a Wff(I)(Z) , we write:

(a) z 1 Z 2 Iff (Z 1 - Z2) is X-valid,

i.e., (ZI 1Z2) is valid for all 11 11 e N , or equivalently
Z 1logically implies Z 2 relative to N

(1) Z1 X= Z2 ff (Z1
I *N Z2 ) and (Z2 'N Xl) , which is

read " Z1 and Z2 are equivalent (or tautologically

I



56 Goodman and Nguyen

equivalent)". Thus, if Z 9 Wff(L) is a collection of
tautologies with respect to X , then

S(-r) 4 (T X Z) is the same as (T O Z)

(i) We also denote

Val(L), 11) d {( 0) 9( 9) is a sequent valid for
1 II)

and

Val(L,X) = n Val(L,II 11)
II IIEX

as the class of all sequents valid simultaneously for all
II II E X .

Note the specialization of (a) , (/), (7) when X = L ; in
the case of (7) , we use the term "logically equivalent with
respect to L " , etc.

(vI) We say a logic L is truth functional iff for eai,
n ? 1 , each i e Loc (L) , there is a function f7  such that

for all individual variable assignment functions w , all
II II E L , all .1 .... , n e Wff(.)(Z) I

11 ( i, .... )ll6 = f7 (lII i ..... l nuII n w)

The large class of truth functional logics L generated by
negations, t-norms and t-conorms is treated in section 2.3.6. On
the other hand, in Example 4 of part (C) of this section, the
non-truth functional logic PL (Probability Logic) is briefly
considered. (See also 2.3.9 (A) for more details.)

In particular, note the special case where for all If II e L

11Wff(L)I 11 Wr d 1 e Wff(L)) = H ,

a fixed lattice of some kind (such as (0,1 for classical logic
and [0,1] for many multi-valued logics), and where for each

7 e Loc n(L) , f : n - H we call H the truth space for L

n n
We call the set of all possible f : Hn _ H, Bool n(H) , the class

of H-valued Boolean functions. We call the subset of Bool(H) used
in L, the designated semantic truth functions for L In part (C)
of this section, many of the logics are described through the evalu-
ations of their logical connections being Boolean functions.

(vii) Truth functional completeness. (See also Rescher [214],
62-66, Maydole [172], 140-141).

A truth functional logic is truth functionally complete
iff all possible Boolean truth functions (relative to the
appropriate truth space H ) can be defined as functional com- o
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binations of the designated semantic truth functions (Boolean)
for the logic. For example, classical logic (Lukasiewicz logic
with n = 2 ) is complete with respect to NOT , AND , OR
In multi-valued logics, in general, this is not true. However,
Postean n-valued logic is truth functionally complete, where
indeed a single binary connective has been shown to generate
all Boolean connectives (Rescher [214], p. 65). In particular,
all Lukasiewicz n-logics, for Ro > n Z 2 , are truth func-

tionally complete. Finally, no infinite-valued logic which has
a finite set of designated logical connectives can be truth
functionally complete.

(viii) Briefly, we again define the following:

Th(L) = (Ax(L), Rul(L))

is a theory for t , when Ax(L) , the axioms, is a collection
of relevant sequents from Seq(L) , the class of all possible
sequents of wff's usually involving the order symbol I-

Rul(L) is a class of deduction rules, i.e., relations among
the axioms. In turn, the class of all theorems or deducts of
Th(L) is

De(Th(L)) = span(Th(L))

(See also section 2.2.2.)
Note that axioms and deductive rules for theories may be pre-

sented in several different (and in general, non-equivalent) ways.
(See section 2.2.2, for example, for the presentation of the the-
ories Thsyn (Z) and ThK(L) , in terms of sequents, as we have

agreed tacitly to do throughout the text.) Within this structure,
one may choose a number of ways that a given idea may be represented
as an axiom or rule sequent. Consider for example the basic (Z)
set theory Axiom of Extension (Zl) (see section 2.3.4.b), using
simplified notation for all individual variables. (ZI) as formu-
lated as a single wff :

(Zl) ' g (Vx)(Vy)(Vz)(((x G y) =* (x e Z)) (y z))

Approach 1: (T - )
Equivalently: (a '- F) , for all 9 e Wff(Z)

Approach 2: (((Vx)(Vy)(Vz)((x C y) = (x E z))) - (y z))
etc.

We define analogous to that of tautologies:

S(r) d (Th?)

We define Th(L) to be consistent Iff

De(Th(L)) c Seq(L) (proper)

and to be inconsistent iff

De(Th(L)) = Seq(L)
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(Ix) We also recall thatU V: L - (C,%) is called a model
for some theory Th(L) iff Ax(L) 5 Val(L,11 II) , which in'
general (assuming modus ponens, etc. holding - see, e.g.,
Appendix 2, end of section 2.4, rule RI,Th,2) , in which case

De(Th(Z)) r Val(Z),1I II) , the (deductively) :soundness property
of Th(L) for I II

In addition, we define for a given logic L and theory
Th(L) , the class of all models of Th(L) relative to L as

Mod(Th(L),L) d (1II I II II E L & 11 II is a model for Th(L) .

If Mod(Th(L),L) * 0 , we say Th(L) (or Ax(z)) is model-
consistent.

More generally, for any
Z 9 Seq(L) = Wff(L) x {1-) x Wff(L) , we say z is model-
consistent iff there exists a I 11 such that Z 5 Val(L, II 11)
For any collection X of II 11's , we say z is model-
consistent w.r.t. X Iff Z G Val(Z,X) On the other hand,
we say Z is mode)fconsistent for (or in; X it is not model-
consistent w.r.t. X (In particular, we can consider the
case X = De(Th(L)).)

We also abuse notation somewhat and define the class of
all models II 11 : L -* (c,%) of Th(z) , for (C, ) fixed as
Mod(Th(L), (C,%)).

In turn, we say Th(L) is a (deductively) sound theory
for logic L iff

De(Th(L)) 9 Val(L,L)

On the other hand, we say Th(L) is a (deductively)
complete theory for L iff

Val(L,L) 9 De(Th(L))

Similarly, we also use the notation, Val(L,(C,%)) and
consider soundness and completeness relative to all 11 I's
having ranges in a fixed (C,%) .

(x) Note that if Mod(Th(t),L) has non-degenerate members
II II , then if Th(L) is sound and model-consistent relative

L , then Th(L) is also consistent. (Proof: If Th(L) is
sound, model-consistent, yet inconsistent, then there exists
II II. (non-degenerate) such that Seq(L) = De(Th(L)) a Val(L,L)

S Val(L, II I:) S Seq(L) , whence equality holds thr.oughout and
Seq(L) = Val(, II II W) Hence for all W, e Wff(L) , EVil

11911 and l 119 le , i.e., 11611 = lEVl , for an appropriate

choice of & L

(xi) Let theory Th(L) and logic L for L be given. Then:
Th(L) is logically complete w.r.t. L iff for all

* E Wff(L) , if kLr , then (-) e De(Th(L))

Th(L) is logically sound w.r.t L iff for all
V* 4Wff(L) , if (I?) E De(Th(Z)) , then L?
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Note that if Th(L) is (deductively) complete w.r.t. L then
it is logically complete w.r.t. L Th(L) axiomatizes L iff
Th(L) Is (deductively) sound and complete w.r.t. L and for any
Z 5 Val(L,L) , 7 e Wff(L) , If z L r , then (I-v) e De(Th(L))

(the "capturing" property for Th(L) , w.r.t. L )

(xii) Finally, note some miscellaneous definitions will be
mentioned:

Th(L) has the compactness property for logic L , iff
for each finite set A . De(Th(L)) , there is a II 11 L

such that A G Val(L, 1l1lA) , implies that there is a II I L

such that De(Th(t)) 9 Val(l, II II) . Obviously, if Th(L) is
sound for L then it is compact for L .

Let L be a countable language, i.e., L has at most a
countable number of symbols and hence terms, etc. Then the
Ldwenhelm-Skolem property holds for Th(z) iff, when there
exists 11 II such that De(Th(L)) S Val(L, II II ) , then
I! II : L - (c,%) may be chosen so that its semantic domain
(llVar(Ob(L))Il G Ob(c)) is at most countable.

For the basic concepts of negation-consistency ((9 I ?) and
(9 -not ?) not occurring for Th(L)) and the related Law of Excluded
Middle, see Rescher [214], pp. 161-166, 148-154. For other
definitions, including decidablity and recursion, see, e.g.,
Enderton [54], Curry [44], and Rescher [214].

(b) Soundness and completeness.

In this subsection, we proceed to establish the soundness and
completeness for certain theories relative to semantic evaluations
in (deduction) categories, and in particular in (formal) topoi. The
materials presented below are drawn from Coste [41], using however,
our notations. Roughly speaking, soundness and completeness means
that the deduction system, that is, the choice of theory Th(L)
and class of semantic evaluations, is "correct".

First, (F,a) is called an arrow between two deduction
categories (C,%) and (s,?) iff F : C - M is a functor and
a : % -* ToF is a natural transform. When these deduction cate-
gories are formal topoi, we continue to call (F,a) an arrow if, in
addition, a preserves order and all the properties Foun(C) ,
Loc(C) , Quan(C) , used to define a topos. (See Appendix 2, end of

section 2.4.) It follows that DeCat d (Ob(DeCat), Ar(DeCat)) is a
category where (Ob(DeCat) = class of all deduction categories, and
Ar(DeCat) = class of all arrows as defined above.

Lemma 1 (See, e.g., Coste [41], p. 15.)

Let L be a formal language of the form Lsynbb for either

b = 0 or K (or b 9 K symbolically indicating that only a cer-
tain fraction of ThK(L) is assumed) as developed in section 2.2.2.

Also, recall the canonical deduction category Var(Z) (a formal

topos for b = K ) and the canonical model II II L - Var(t)

Var(L)
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(see 2.3.2 (II), e.g.) with

Val(L, i ) = De(Thsynb(L)9at(L) S b(

Hence, Thsynb, b(L) is model-consistent.

Then, in addition, it follows that for each deduction category
(C,%) (formal topos, for b = K , and more generally, a deduction
category with some additional structure corresponding to symbolical-
ly b a K - see Appendix 3, section 2.4 for details on these
intermediate forms) there is a bijection (C,%) '

Mod(Th synbb(L), (C,%)) -# Ar (DeCat)
b# (Var(L), (C,%))

the latter collection of arrows being order preserving, where for
any II II e Mod(Th synb'b (C,)) I

lp (C,%) (1 1) -(d ii ) , where rl I is given in 2.3.2.

Theorem I (See Coste [41), p. 15)

Let L and (C,%) be as in the last lemma. Then Thsynbb(L)

Is (deductively) sound and complete in (C,%) (b = 0 or b = K
or b 9 K) , hence kby result (.c) of part (a)) consistent.

(Proof: Note that for any II I e Mod(Th synbb(L), (C,%)) , the fol-

lowing diagram commutes (i.e., the obvious arrow compositions are
equal):

Var(L)

L ) Var(L)

(C , t)

Hence,

Val(L.(C,%)) = Var(L, 11 0_
Var(L )

= De(Thsyn bb(L)).)

Remark.

Any tautology TI(e Wff(L)) for any 11 1(c,) as above, can

be written in the formal language as (T IL )1 and hence by the
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rules (Ti = L IF , yielding for any model, involving T

IIT11 I (f S II)lli1 , and by the maximality of IlTil1 (preserving Ti)

IlTill = ( 1? If Thus, e.g. (by its very definition) Ti , itself

is always a tautology (for any model) as will be (see 2.2.2, VI,

Theorem 7) a 4 nt(d ) v nt(nt(?)) , for any T e Wff(t) ; hence we

can write in L , (Ti sL i). Moreover, by the soundness and com-

pleteness property of, e.g., Th synKK(z) , it follows that all

tautologies , E Wff(L) may be identified as (Ti L i)

Next we obtain soundness and completeness of Th syn b b (L)

relative to ordinary categories (corresponding to b = 0) , ordina-
ry topoi (correspondding to b = K) , and intermediately, categories
with additional structure (corresponding to b 9 K) . (See 2.3.2 IV
for the definition of semantic evaluations in ordinary categories or
topoi.)

Theorem 2

Let Lsynb (b = 0 or K or b q K) be given with C as

in Lemma 1.
Then Thsynbpb(L) is sound and complete in C , i.e., in

(C,Sub)

Proof:

The composite map

(G , V~ ) 0 II II : L -. (: 1 (Var(z)),Sub)

is a model so that because (G ,A ) is order preservingVar(L) Var(L)

so is the entire map. In addition, analogous to Lemma 1, there is a
bijection for each ordinary category C (or topos) expressed as
deduction category (C,Sub)

(C,%) : Mod(Th synb b() '  (C,Sub)) - Ar(!ii (ar(L)),Sub), (CSub)

(DeCat)

The following diagram commutes:

II If
Var(L)

L Var(z)

(CSub) (G ,O\ Var(L) Var(L)

(r,,Sub) 4 (!rii (Var(c)) ,Sub)
(C Sub) ( if 1 C, b ))
~,Sb (C ,SubQ
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Thus, Theorem I applies completely here.

Remark.

The ideas developed through this subsection may be extended (or
attempted to be extended) as follows, when category or topos struc-
ture is lacking:

Establish, for each structure T to be considered, a bijection

: Mod(Th(Z),9) -# Map(lar(L),M)

where "Map" in some natural sense replaces arrows and is an order
preserving class. Then all we need consider (or we can define to be
considered) is the identity-like model 11 II , for relatingVar(L )

rroperties of Z with properties of 0

(c) Examples of loqics

In the following examples, we consider only semantic evalua-

tions of the form I 11 : L - (SET,H') . Moreover, of the seven types
of logics briefly considered, only one - Probability Logic - is a
non-truth functional one. In any case, it follows that all of these
logics involve relations and functions upon H in the determination
of 11 11 restricted to Loc(L) and Quan(t) See Rescher [214]
for a more comprehensive treatment of such logics.

1. LogicH H(L) = Lukasiewicz Logic n . n 2,3,4,.... OR 1

L n a Lukasiezicz Logic n

2 = Classical two-valued logic

Define:

f [0,1] (unit interval) ; n =

I set of all rationals in [0,1] ; n

[0,l/(n-l). .... ) ; n = 2,3,...

where H = I n = truth space of tn

Now consider:

X = Lt2  ,

where Loc(L2) = {nt, = , 3)

with compound/eliminative definitions:

(Ti I V 2) for (-1 =  2 =  2 '

1 A V 2 for nt(ntP1 v ntr 2 )

I c=, P2 )  for (?I =. 2 )A(I 2  Y '1 )

(V)(? 1 ) for nt(3(nt T1)) 1

for any r,?2 e Wff(t 2 ) d Wff(t2) , slightly abusing notation.

0



Symbolization and Evaluation of Language 63

We do not consider LR because of closure problems in truth
0

evaluations.
Truth space (L2) = range of semantic truth functions of

L2 = (0,1).

Semantic Truth Func(L 2 )
= (lintil , if&I , floril , 11i I , 11t= 11 , 11311 , .¥VII) ,

where for all 9,? e Wff(L 2 ) ,

lint (0 )tI -- ntil(llell) (11011 re (0,1))

1 - Il9ll
110 ,A T11 min(llell , i1 ,il)

110 V TI maxilSIl , IIYII)
lie I II - I(nte) or III

- max(l-ltell, I1,Pl I)
1le = fil = min(max(1-leu , i?II) , max(1-1'i , 11911)

pointwise.

'l( o)?I = sup (ilfi I G(a )(?))
11(ya)TWlu inf (1i w| Q '( G(a,ta)(*P))

where

d (' w' individual variable iissignment such that

w = (y), y e TV(?) -4 (a)
arbitrar ; y = ,

Note that validity and zc=tisfac-ion in classical logic aredirectly connected because of the simple truti sp- I= (0,1)
Fnr Z1 ,Z2 - Wff(L 2 ) , . - 2 z 2  iff whenever Z is

satisfiable by any ii II e -2 : hen so is Z 2 , etc.

Basic Theorems for L2 (see also Ln)

For all e.? E Wff(L 2 )

(i) 11 I 1II711 iff f rl xfl

if f ( ) - ,

and

IIVIII if

5 f llp wn = ,

for all II 11 e L2
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(ii) v ia contradictory iff T is model-inconsistent.

(iii) T is a tautology in L2  iff nt(T) is contradictory in

L2

(iv) When we add various basic theories Th(L 2 ) to L2  we can

obtain (deductive) soundness, (deductive) completeness, logical
completeness, logical soundness, consistency, and that Th(L 2 )

axiomizes L 2  In particular, (see Maydole [172], pp. 50-54)

Maydole's 2 2 is such a theory, with five axioms (all in formal2QL2

tautology form (I-')) and two deduction rules (modus ponens and
universal quantification). (See also 2.3.4(b) for a listing of
these axioms and rules Al - A5, R1, R2.)

Note that for L2 , all weak and non-weak properties coincide,

including validity and satisfaction, due to the simple truth space
(0,1).

An excellent treatment of L2  may be found in Curry [44].

Enderton [54] and Lightstone [156] also present comprehensive stu-
dies of classical logic, together with set theory models, including
- via the compactness property, in effect - Robinson's nonstandard
numbers.

For n = 2,3,4,..., (finite), Ln  is the same as L2 except
for truth space (U2) = {0,1) is replaced by truth space of

L I
n n

Basic Theorems on Ln , n =2,3... '*0 1

(i) For all n for all 6,? e Wff(Ln) , (abusing notation

slightly)
If (6 ') , then 6 implies r relative to Ln

n
Note that for all 6,,

n

iff

max(l-l1i ,?111?1) = 1

iff

I or 119il = 0

(ii) For all n : for all T E Wff(Ln) , if 'P is contra-

dictory in L n , then ' is model-inconsistent in Ln

(iii) For all n : for all T E Wff(L n ) , if (,P) then

(P, w'iich in turn implies 1P
n n

0
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(iv) Weak compactness theorem holds for all Ln : i.e.,
V Z ¢ Wff( ) , Z is satisfiable (for some model) iff Y z' g x
Z' finite, Z' is satisfiable (for some model).

(v) The weak Lowenhem-Skolem property holds for all Ln
i.e., for any z 9 Wff(t n) , if Z is satisfiable then there is a
countable semantical domain and a corresponding model which alsomakes z satisfiable (analogue of Lindelof covering property).

(vi) LM is not axiomiatizable and hence any Th(L)1
cannot be both logically sound and logically complete for L. (weakI
sense, here). Hence, if Th(Lt ) is logically sound for L , it1 1
cannot be (deductively) complete for L.

(vii) For any p,r E Wff(Ln) , define

n terms
Then

ii 9 n ?I = min(l,n(I-110,1, + I1F11) ,

for all II I E '

(See Maydole [1721, pp. 105-111, for further facts.)

See the paper of DeGlas [45'], where the Stone representationtheorem is extended to provide a semantic basis for Lukasiewicz andPost logics, which in turn can be used as a basis for fuzzy set
theory.

2. Logic(Z) = Bochvarian Logic. B n = n 2,3,4.....

Syn(z) - same essentially as for L 2 " Loc(L) = (nt, , 3, or, &, c=,)
with V a compound or eliminative definition.

= Truth Space(B 2= 1 2 n- 2 1)H Tut Sac(Bn (,n - 1'n - 1--n I

Ser Truth Func(B ) = (IIntI , lII , Ii=o , II&I , 11orl , 1311 , lI'VI' )

int(9 )Jl = I - 11911

min(l, 11 11 + ll' II) , if 11 11, II lI e (0,I)

1/2 , if 11911, II1,l otherwise and n odd,
119 = 711 = [ Z d

Z n 2 if 11911, Il'Il otherwise and n even..n -I

SIf l~l-l'1ll I iff 11911, 1tPII e (0,i)
lie & 'P11 = Z if otherwise
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For B, I everything is same as above, except Truth Space

(BR ) = [0,1] ,etc. (See also Maydole [172], p. 125.)

3. Log,, 11(z) = Gdde-Intuitionistic logic Gn , n 2,3,4 ......

Sem truth func (G n) = (llntll, 11*11, lI&11, Ilorll, lIlI ) ; and Go can
n 1

be considered, also.

Note that here, the truth space is a Heyting algebra H More
specifically, H is a fixed complete Heyting algebra, i.e.,

(a) H is a lattice - a partially ordered set with order <

say, over H x H , which is reflexive, autisymmetric and transitive,
such that operations A , v : H x H -4 H exist, where for any
x,y e H , x A y is the meet (minimum or greatest lower bound) and
x v y is the join (maximum or least upper bound), having the unique
properties

(i) x A y :H x,y

(ii) For all z e H , if z :H x,y , then z SH x A y

(iii) x,y & H x v y.

(iv) For all z e H if xy & H z , then x v y S z

It follows that A and v are idempotent, commutative, asso-
ciative (and hence extendable to any number of arguments recursively
unambiguously) and absorptive.

(b) H has a greatest element, say, 1H or TH (or simply 1)

relative to S H and a distinct least element, say 0H  or IH (or

si-nply 0) relative to <H ' with

0H < 1H , x A O H =0 x , x V 1 H H'

all x e H.

(c) H is a complete lattice, i.e. in addition to being a
lattice, if C 9 H , then there exist Xc YC e H such that,

abusing notation

(i) xc 5H C SH YC

(ii) If zi, z2 , e H and z I SHC S z , then

. zI S xC HYC S z 2  ,

i.e., x and yC are greatest lower bound and least upper bound

elements, respectively, for C relative to H (Of course, x.

YC 4 C , in general.)
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(d) H has the Heytlng-Buwer property:
For any u,v e H , define

C {z ( z H a u A Z H V)

Then, using the notation from (c)(ii), let YC be the least
u,v

upper bound element in H for Cu,v  It is then assumed that

YC • eC , i.e., Cu,v  has a maximal element in it with respect
UVv

to order SH

Define also

(u * v) = YC = V(Cuv)
U,V

called the pseudo-complement of u relative to v or the
intuitionlstic implication "if u then v ". We can also define
the double implication t=, in the obvious way:

u =v for (u =v) A (V U).

It follows that H is also distributive for A over v and
vice-versa for any index set. In addition

(i) For all x e H
(x 3 x) = 1H .

(ii) For all x e H

nt(x) = (-x) = (x * OH)

is the pseudo-complement of x relative to 0H or the Intuitionlst

negation.

Two basic examples of a complete Heyting algebra are:

Example I. Any totally ordered complete chain H such as a closed
interval in R - in particular, H0 - [0,1] In this example, for

any x,y e H ,

y , if X >H Y (i.e. x *H y)

(x Y) = 1 H if x :H y

and hence

nt(x) = H if x >H 0H (including x = IH)

1 'H if x =H 0H

Example 2. Consider any Boolean algebra H i.e., H has two bi-
nary operations, say A,V : H x H -o H and a unary operation
C : H - H such that v and A are symmetric, associative, V
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finitely distributive over A and vice-versa and contains 0H and

I H such that for all x E H , 0

X A OH 0H  X V0 = x

X A 1H x x V IH 1H

X A Cx 0 H x v Cx = H OH  C1H

Then define partial order S H by for any x,y e H

(x : H y) iff X A y = X

iff x v y = y

Also define b oy, for any X'y E H

(x * y) _ (Cx) v y

Thus, H is also a Heyting algebra. Also, H may be a Boolean
c-algebra, i.e., H is also a-complete - for any at most countable
set C = (x1 ,x2 .... } H , xC , and equivalently, yC e H , and hence

H is a a-complete Heyting algebra, etc. Usually, H is interpreted
as a collection of subsets x of a space X , where the null set 0
is identified with 0H , X with 1H ' n with A , U (or symmetric

set difference A) with v , and C with ordinary set complemen-
tation relative to X . I

In addition, we can add an equivalence relation over H x H
together with two other associated relations: Let 9 : H x H -* H
be arbitrary such that R I,Th, 8  and Ri,Th,19 of Appendix 2,

section 2.4 hold for a replacing x there:

9(x,y) = G(y,x)

e(x,y) A 9(y,z) < G(x,z) ,

for all x,y,x e H Thus, e.g., we can choose e = 6H ore = AH,

etc.
Define

D(G) : H - H by

D(Q)(x) d(x,x) ; all x e H

and finally, in turn, define e9 : H x H - H by

e 0 (x,y) d (D(e) (x) v H  D( ) (y)) G e(x,y) ,

for all x,y e H

Some specific examples of 9 , D(9) and e9  for H a com-

plete chain: 0
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a
(i) O(xy) = D(e)(x) A D(G)(y) , all x,y e H

dIT H  iff D(O)(x) = D(9)(y)
e9 (x,y) fT

9D(a)(x) A D(a)(y) , iff D(G)(x) S D(G)(y)

In particular, note the case 9 = IdHxH

ee(x'Y) =ITH iff x =HY

[ X AHy iff x *Hy x,y 6 H

(ii) G(x,y) T H  all x,y e H

e(x,y) = TH , all x,y e H

(iii) G(x,y) 8 8(H)(xy )  (ordinary Kronecker)

T H  iff x =Hy

= VH  iff x SHy ; x,y e H

e(x,Y) = 8(H)(xy) , all x,y G H

It can then be shown that e9  is an equivalence (or equality)

relation in the sense that R I,Th, 7 - Ri,Th,21 of Appendix 2,

section 2.4 all hold with x replaced by e. I

proj (ixi) =(proi (I)xi) =X~)) by x , proj (ixi) by y1r~(Ii = pr (1) (ixxi) 'P°2'

etc.
For the basic properties of 9 , D(9) and el , couched in

terms of Higg's topos and related structures, see Appendix 3 (iv).
Indeed, all of the axioms and rules given in Appendix 2,

section 2.4 for A , v , * = , etc., are all (generalized) intui-
tionistic logic ones and are compatible for the case considered
here - H (See also 2.2.2 (VI) for theorems one can derive for
A , V , , , etc.)

4. Probability Logic(PL)

Probabil!ty lcgic (PL) is a non-truth functional logic over

We present here a brief outline of PL. Additional properties
for PL and related logics may be found in section 2.3.9 (A).

In this case, we choose H = 0,1] (unit interval) as the
truth space.

For each i , let X i e Ob(SET) and 11ill 1 (Xi) be a sigma

algebra. For each (f : I- j) e Var(Ar(L)) , 'Ifl : 11111 -. 1Jil and

for each r I E Var(Rel(L)) , with o(r1 ) = i , let Drli E [0,1]HiJll

be such that ir 1 is a probability measure and hence for any indi-
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vidual variable assignment function ) and, say, V = rI[x(i)]
(i))

[IZli = fr i(A ) e [0,1] , where A = w(x ) 4 e ill , etc.

As usual, for any a,P e Typ(L) , and
(F : a -# P) e FuncSymb(L) , IlFi : Hall. iipi , with fail = hIVar(a) ,
etc.

In particular, consider the logical and quantitative aspects of
II II , noting here we let

Rel(C ,) = U [0,1]
iEVar(Ob(L))

Ulntil : Rel(c, ) -+ Rel(c,%)

so that for any T e Wff(M)(I)

lint(?)il = llntll(llIPll) d I - liri e [0,i11 i l

Hence, for any A e ,ill , denoting CA d Xi 4 A

1lnt(?)it (A) = Until (Ilril ) (A)

= 1 - IlTIl (A)

= 11 1 (CA)

Next, consider

x : Var(Rel(L)) x Var(Rel(L)) - Var(Rel(L))

where for any ri's i e Var(Rel(L)) , it ib assumed

r i x s E Var(Rel(L)) with o(ri x sj) i x J Then

llxll : Rel(C,%) x Rel(C,%) - Rel(C, )

is defined so that for any 7,O e Wff(L) , liPxGI (hiIll lxIl 1011) is
some choice for a joint probability measure, given the marginal pro-
bability measures fir.i and iis .i

Also define

Iti : Rel(C,sA) x Rel(C,% ) - Rel(Ct)

so that for all V,Q e Wff(L)

li tg ll d I11 lit l Hlll

d= l1 11 + Hall - I1 HU IlxII Ile"

noting, because of the range of It I being in [0,1] , all arith-
metic operations as above are well-defined.

In particular, define

0
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Il&II,I~orII Rel(C,!t) x Rel(C,%) -- IRel(C,$0,

for all r,9 E Wff M (L) ,and all A 4e 11111

11,P & GIl (A) = (:IMI 'I&I ii9I ) (L)

(11I I IxIl f911)(AxA)

For any ?9eWff M (L)I

d

d (I171 11tH 11911) (AxA)

= 11711(A) + 11011(A) - (11TH1 II&ll 11911)(A)

It also easily follows that for any

7EWff M (L) 9 Wff M)(L) , any A e Hill , B 4E IJ11

(11711 IIxIl 11011 )(At B) = (11711 Ili 11011 )(AxB)

where A t B = (AxX i) U (Xi xB) , etc.

In addition, one defines for any 7,0 e Wff M(L)

II((nt7) or G)11

d
= OInt7I1 IIorl 11911I

IIP It d 11 (f --s 9 ) & (0 ? )I[

and the quantifiers are evaluated as for any 76Wff (ixj)(

xM , as for classical logicixj

ixj W.

11 3Xi))PI dsup (11711, I all w * e G(x (i) W) (P))

where

d
G(xi)) individual variable assignment such that

W.(Y) w (y) y V1)- (x (i)

ar yI
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It can be shown that for any ?l,Y2 E Wff(L) ,

[II1 = 11?211

iff 7 1 and I 2 are equivalent for L2

Finally, note that PL is not truth-functional, since there is
2no function f 1xlI : [0.1] [0,1] such that for all individual

variable assignment functions w , and all r,9 e Wff(L)

= fllxl (IlI II , 119 11 ) -

or equivalently, for all A x B E lixjl,

II'Fx9lI(AxB) = fll1xll(IlMl(A), 1l91I(B))

In particular, there is no g, : [0,1] - [0,1] such that for

all T , 0 and w ,

11F&911' = (11,P11 116Cl 11911 )

See section 2.3.9 for connected results.

5. Standard Sequence Logics. (See Maydole (172], p. 130-132.)

6. Modal Logic. (Rescher [214], pp. 188-197).

Essentially, modal logic is characterized by a collection of
unary logical connectives, for example, the three alethic modal
operators: Necessity, Possibility, and Actuality/Assertion. The
corresponding logic can be developed by specifying unary truth-
functional tables. In addition, of course, other logical con-
nectives are used such as not, and, or, * , etc., and in turn,
compound or eliminative logical connectives can be defined in turns
of these connectives. Also, theories have been established char-
acterizing modal logic. All these logics are special cases of
multi-valued logics. (See also [245].)

7. Generalization of truth functional logics using negation opera-
tors, t-norus, t-conorms. (See section 2.3.4 for a comprehensive
presentation.)

2.3.4 Set theory for multi-valued loqic

(a) Introduction

All mathematical concepts and reasoning may be based upon some
form of set theory. (However, see, e.g., Von Neumann [257] for a
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primitive function approach, Lake [149] for a related procedure, or
Gilmore [74), for a symbolic operator approach replacing set
theory.) In the past, set theory has been mainly confined to the
scope of classical two-valued logic. In modeling problems of the
real world, two directions present themselves. First, one can
attempt to make concepts - especially those couched in linguistic
terms - conform more narrowly to classical 0 - i logic by
"mathematizing" vague concepts. For example, "some apples are bad
in that bunch," can be made more precise by perhaps artificially
ipecifying "three-sevenths of the apples are bad in that bunch".
(But is three-sevenths exact?) On the other hand - the view taken
in this monograph - is to keep the ambiguity or vagueness of such
descriptions, but consider the corresponding truth evaluation not
necessary restricted to T (or 1) and I (or 0) , but rather to
lie within the unit interval. Correspondingly, set theories for a
given natural language, and, in turn, using the Parsing Principle,
for a related formal language, may be established also within a
multi-valued truth setting. An application of this is the estab-
lishment of knowledge-based systems from both experts and analytic
considerations, from a multiple truth viewpoint. (See Chapter 8).

In the following development, L is any fixed formal language
and L = Logic(z) is some fixed logic, unless otherwise stated.
Initially, a list of the most common axioms used to develop set
theories will be presented, followed by a list of compatible logical
axioms needed to develop the set theories for various logics. Then,
in addition, deduction rules are added to the various axiom sets to
complete the theories, eight of which are summarized below. Final-
ly, a brief survey of basic relations, properties and problems of
such set theories is presented.

(b) Selected set theories

The following list contains (by no means exhaustive) 33 of the
most common set theory axioms used to form various theories of sets.
Only the first three axioms will also be presented in some detail.

For symbolizations of the remainder and further details, see,
e.g., Maydole [172), Cohen [39], Vopenka and Hajek £258], MacLane
(165), Fraenkel and Bar-Hillel [62], Devlin [46''], Cohen and Hersh
[40), Suppes [249], Pareigis [202] (Appendix), and the discussions
of Cohen, Hajek and MacLane in [4']. All of the above, except
Maydole, refer to classical 0 - 1 logic.

Before presenting the axioms, four distinguished binary
function symbols in Foun(L) are reintroduced from section 2.2.2:

(set)abstraction {" I'") : Ob(L) x Ob(t) x Rel(L) - Ar(L)

(set)membership E Ob(L) - Rel(L)

(set)exponentiation Q : Ob(L) - Ob(L)

(set)equivalence : Ob(L) Rel(L)

Note that all of the axioms presented below are in the form
(f) , for some ? e Wff(L) . (See also section 2.3.3 (a) (viii)
for a discussion of the different ways axioms may be presented.) In
addition, only e and X appear explicitly in the axioms, while
the class abstract operator (.. .) is avoided by use or the con-
textual definition approach via

(aII(a)} for (3p)(Ya)((aep)
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where a E Wfvi(L) , B e Wfv i(L) , and T r Wffi(L) , for the

various concepts - such as unions, intersections, ordered pairs,
etc. - produced by the set theory axioms. (See the discussion in
[172], p. 70-76.) Furthermore, (compatible with the comments in
[172], p. 248) we can evaluate

11(a i P(a ))11Li (11i., 1' 1) ,

.qhere 1i1 : Hill -# H , for example.

The basic table of axioms is as ollows:

Axiom Un Universal

I- (3a)(V/)((Acia) p ,3)

where e and - are abbreviated symbols and p e Wfvi (L) , for

some i E Var(Ob(L)) . Individual variables here, a , / ,
are considered sets in a general sense.

Axiom Z1(E1) Extension

I- (Va) (VA3)(V'Y) ((Y e a 1E/) a )

Many modifications of this axiom exist. (See Maydole (171), p.
66, 60, 63, 214, 222, 223.)

Axiom GC Generalized Comprehension

(VaI).. (Van) (3a)(VA)(p e a - ?(A,a,a1 ..... n) )

for all V e Wff(L)
Thus formally, any attribute 'P yields a corresponding

generalized set a Many variations or weakenings of GC exist,
including Abstraction (see Maydole (172], pp. 65, et passim). (See
also subsection (d) for further discussion.)

Also, note the following axioms:

Abbreviation Axiom Common Name

Z2 Null set
Z3 Unordered pairs (union of pairs)
Z4 Arbitrary union
Z5 Infinity
Z6 Replacement
Z7 Power set
Z8 Regularity (Russell Paradox exclusion)
Z9 Choice
Z10 Continuum Hypothesis
Z1l Ordered pairs
Z12 (Relative) Complement
Z13 Cartesian product
Z14 Membership relation
Z15 Domain
Z16 Permutation (conversion)
Z17 Foundations
Z18 Restricted Comprehension
Z19 Transitivity
Z20 Mostowski
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Z21 Singletons
Z22 Intersection
Z23 Existence
Z24 Restriction
Z25 Range
Z26 Relations
Z27 Nontriviality
Z28 Functionality
Z29 Double replacement
Z30 Separation
Z31 e - Induction
Z32 Collection
Z33 Double complement

(A) A selected list of logical axioms used in developing various
set theories

For all 9, 7, 7 4e Wff(L) ; all a ce Var(L) , .an impli-
cation operator, etc.:

Abbreviation Axiom Name

Al Deduction

A2 Distribution of implication over implication

N (09 P ( 7 q)) -.*( (9 0 ' (9 Tqr

A3 Modus Tollens

N(nt *nt a) * (9~v

A4 Distribution of Universal Quantification over

Implication

a bound in 9

A5 Universal instantiation

( ((va)?) =, 9

where 0 is like V, with a replaced by p ,etc.

A6 Equivalence

N(Va)(a -a).

A7 Substitution

N (Va) MC) ((a /) ((a) 9(p))
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where e(a) is like 9(p) with A substituted for
a whenever a is free.

See Maydole £172], p. 50, et passim. Hay's Logic Axioms (HI)

- (H9)((HI) = (Al) , (H2) = (A2)(modified) , (H4) = (A3)) are

discussed in Maydole [172], p. 225, et passim, including various

properties for Logic(L) = L that hold when (Hi) - (H9) are

assumed.

Next, two inference rules are listed below which are used in

conjunction with various collections of set theory and logical
axioms to form set theories.

(B) Basic inference rules use in set theories

Abbreviation Inference Rule

RI Modus Ponens

If 1(9 = r) and I- a then 1- IP

R2 Universal Instantiation

If 0 9 , then -(Va)9

(C) Some basic set theories

To each of the following eight axiom collections, Ax(L) , may
be added Rul(z) = {(R1),(R2)) (with some redundancy possible) to
form eight corresponding set theories Thx (L) , where

x = NST, MH, NGB, ZF, IZF, Ch, Wei, Nov.

1. NST - Naive Set Theories (£1043, £172])

a. (Al) - (AS) , (ZI) , (Z9) , (GO) ,
b. (Al) - (A7) , (ZI) , (Z9) , (GC) with an
identity assignment (valuation) constraint.

2. MH - Maydole-Hay Set Theories ([172], Chapter 6).

a. (A6) , (Hi) - (H9) , (Zl)(modified)(GC) ,
b. (Hi) - (H9) , (Zl)(modified)(GC) with an
identity assignment constraint.

3. NGB Von Neumann-Godel-Bernays Set Theory [4').

(Zl) - (Z8) , (Z12) , (Z14) , (Z16) , (Z22) -

(Z25) ; with some modifications.

4. ZF Zermelo-Fraenkel Set Theory [249], [4'), [62).

(ZI) - (Z8)
Optionally, add (Z9) and/or (ZIO)

6
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5. IZF Intuitionistic Zermelo-Fraenkel Set Theory 971j.

a. Grayson (ZI) , (Z3) - (Z7) , (Z30) - (731)
b. Grayson (Zl) (Z3) - (Z7) , (Z30) - (Z32)
c. Powell (Zl) , (Z3) - (Z7; , (Z30) , (Z31) , (Z3.,

6. CH Chapin's Set Theory ([32), [33])

Here, e is a trinary predicate symbol, between
an element, a set, and degree of membership. The
following axinms are thus appropriately modified:
(Zi) - (Z3) , (Z5) - (Z9) , (Zl1) , (Z13) ,
(Z26) , (Z27) ; presented within 14 axioms.

7. Wei Weidner's Set Theory [270].

Similar restrictions hold for e as in Chapin's
Theory:
(Zl) , (Z3) , (Z5) - (Z8) , (Z1l ) , (Z2i . (Z29)
appropriately moified.

8. Nov Novak's Set Theory [1952.

Again, e is as in Chapin's Theory:
(Zl) , (Z3) , (Z7) , (Zl1) , (Z12) , (Z14) , (Z15)
(Z16) , (Z18) , (Z23) , (Z25) , Un

(c) Basic relations anong set theories

(1) For Naive Set theory relative to Logic(L) = L 2

(Z2) - (Z5) , (Z7) , (Z9) , (Z12) , (Z21) , (Z22)

are all theorem in L 2  (Maydole, [172], p. 77).

(2) For Maydole-Hay's theory relative to
Logic(.) = LR : all ZF axioms, except possibly

for (Z5) are theorems in L, ([172], p. 241).

(3) (1) Zermelo-Fraenkel Theory (Zi) - (Z8) is con-
sistent iff NGB is consistent.

(ii) It is not known whether ZF is consistent
or not.

(iii) Essentially all (set-theoretic) theorems of
ZF and NGB coincide.

(iv) If ZF is consistent, then it is not coii-
plete.

(v) (Z9) and (ZIO) are consistent with, and
independent of, .(ZF), i.e., there are various
models for (ZF) which make (Z9) , (ZIO) have
any combination of truth or falsity values
(P. Cohen, 1963: (4'], [39], [40]).
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(vi) ((ZI) - (Z3) , (Z7) , (Z1l) , (Z12) - (Z16))
is equivalent deductively to ((ZI) - (Z4) ,
(Z7) , (Z1l) , (Z18)) (See Johnstone [127],
p. 312-319.)

(4) If ZF is consistent then Weidner's Theory is con-
sistent (Weidner [270), Theorem 11). Weidner's
Theory extends ZF where the predicate membership
symbol is trinary, accounting for membership levels.

(5) Maydole shows ([172], Chapter I, II):

(i) For any NST for L2 GO yields Cantor's

paradox and hence NST is model-inconsistent
(for L 2 )

(ii) For any formal language z and corresponding
Logic(L) , if the following inference rules
involving evaluations can be shown to hold:

Existential instantiaticn (EI)
Universal instantiation (UI)
Material equivalence (ME)
Simplification (S)
Absorption of some order (A)
Modus Ponens (MP)

then any theory Th(L) containing also (GC) has
a Curry-like paradox ([172], p. 121 et passim),
and hence (GC) is model-inconsistent for
Logic(L) . More explicitly, universal and
existential instantiation may be written as:

Suppose II II : Z - (SET,H) with
(0,1) 5 H Q [0,1]

Universal Instantiation (UI):

For any i e V~r(Ob(t)) , ary x e Wfvi(L)

and any w e Wff(L)
If

11 (vx)r(x)I = 1

then for all t E X = lill 1 e Ob(SET)

P11 (t) = 1

Existential Instantiation (EI):

For any i e Var(Ob(t)) , any x e Wfvi(t)

and any r e Wff(t)
If

ll(tx)ei(x)t i s
then there is a t E X. such thdt

i'PIl t) = 1

0



Symbolization and Evaluation of Language 79

(iii) If Logic(L) has a finite semantic truth
value range, universal and existential instan-
tiation always are valid (provided (Ri) ,
(R2) are inference rules, as usual) in any
theory Th(L)

(iv) If for any formal language L and corres-
ponding Logic(L) , the six inference rules
hold in (ii) in a weakened "quasi-" form (by
modifying for various truth levels - see [172],
pp. 123, 124), then a Curry-like paradox still
holds for any Th(t) when (GC) is incluied;
and hence, (GC) Is model inconsistent for
Logic(L)

More specifically, to illustrate the
"quasi" form, (QUI) and (QEI) may be
written as:

Quasi-universal Instantiation (QUI):

For any A E [0,1] and any
I e Var(Ob(L)) and any x e Wfv.(L) , and any

r e Wff(L)

If
II(Vx)'f(x)I[ 'a k

then for all t e XI 1 2lill e Ob(SET)
11711 (t) 2: A

Quasi-existential Instantiation (QEI):

For any i E Var(Ob(L)) and any x e Wfvi(L)

and any r e WffL):
If

11(3x)I(x) 1

then for each integer m 2 1 , there is a
corresponding tm e XI such that

II?ll(t ) 1 - 1/mm

(v) As a consequence of (ii) or (iii) or (iv), Maydole
shows that, except for L , for all other logics

1

considered (Lk , 2 S k < N 0 , Bochvar, Prob. Logic,

Gddel-Logic, etc.) when GC is added to any Th(L),
a Curry-like paradox results and hence except for
N ,Th(Z) , when GC is included in its axioms,
1

is model-inconsistent. (See [172], [172'].)

(a) We do not know whether Th(L) with GC is
model consistent for L.

II
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(b) Since L. is not axiomitizable, no Th(L)1
(including any set theory) can be both logically
sound and logically complete.

(c) Any Th(L) including both GC and (El) is
model-inconsistent for L. with an identity

1
assignment construct ([172], p. 203).

(d) By suitably restricting GC ([172], pp. 151-171),
MH Set Theories (which all contain GO) are model-
consistent for LNI

However, none of these theories can be both
logically sound and complete. Indeed they all are
deductively incomplete, logically incomplete, but
logically sound. (See Maydole's discussions,
pp. 236-245.) On the other hand, MH retains some
form of (GC) and is a plausible candidate for set
theory. (Sce (172], Chapter V.) .

(6) Chapin's (32], [33] theory extends ZF ; some rudemen-
tary arithmetic and set theory relations are develc3ed.
The membership predicate symbol is considered trinary,
hence, involving set membership level.

(7) Novak's theory extends NGB. Novak's membership predi-
cate symbol is trinary analogous to Weidner and Chapin.

Novak, in a different direction [195"] from the
above approach, uses the concept of semisets as originally
expounded by Vopenka and Hajek [258], as the basis for a
generalized, and in effect, multiple-valued logical set
theory. (Roughly speaking, a semiset X, = (x I ?(x) 9 a)

where V 4s a generalized (non-set one) property or pre-
dicate and a is an ordinary set.) Essentially, Novak
first shows that all semisets are monotone approximable by
nested sequences of ordinary sets, i.e., by flou classes
and hence in turn by fuzzy sets. (See section 5.2 (B) for
basic properties and background.) A number of points of
difficulty arise in both the structure of the approximat-
ing collections of sets and set-like operations on them -
in this approach. (Compare with the situation for elemen-
tary flou class representaticn of fuzzy sets by ordinary
sets as, e.g., in Theorem 4, section 5.2 (B).) However,
the approach does appear promising since the entire formu-
lation is carried out completely within an axiom-like
framework, as opposed to the usual situation, where fuzzy
set membership functions are ideally exact numerical
functions, estimated through empirical and psychological
considerations. On the other hand, it seems that Novak
can still not completely avoid, somewhere along the line,
empirical subsets in the modeling of the original wffs
or properties generating the semisets of interest.

(8) For Gbdel-Intuitionistic logic, it can be shown (see
Grayson [971]):

(ZF) is consistent relative to (IZF)(b)

(ZF) is consistent relative to (IZF)(c) .
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(9) In a related vein, it can be shown that ((179])
(Zi) - (Z7) ((Z6) (weakened)) are valid for Godel Logic
relative to Higg(H)

Other approaches to set theory tnrough multi-valued logic
include: Allen (2'], using the concept of "property systems";
Chang's infinite-valued logical set theory (31]; Smith's "textured
sets", a concept using weighted sums for modeling membership-like
functions (244']. See also Klaua's series of papers in the Monat.
Deutsche Akad. Wiss., Berlin, on a set theory based on multi-valued
logic, analagous to - and, originally, '"ependent of - Zadeh's
work, beginning with (139] and [138'). Approaches to set theories
and properties of generalized sets may be carried out through mem-
bership functions only (unlike Ch, Wei, Nov).

in another direction, Willmott [274] has investigated various
ways of defining norms and distances between fuzzy sets which Warren
(266] considered the equivalence relation of shape (up to scalar
multiples) of fuzzy set membership functions. Kloeden (143] inves-
tigated the topological structure (through a Hausdorff metric

x
distance) of the space of membership functions [0,1]

See also section 2.4.2 (G) for a discussion of the connections
between various set theories and topoi.

(d) The axiom of comprehension/abstraction revisited

Finally, let us tie-in the basic approach to set comprehension
or abstraction through formal language L where some or all of ap-
pended theory ThK(Z) (and the appropriate part of Th synK(L)) is

present, with the set theory axioms (and consequently, sot theories)
discussed earlier. (Again, the basic reference is [172], pp. 65-86,
246-254.)

Let L be a formal language as presented in 2.2.2, but with
ThK(L) to be specified.

ii
First note that for any i,m e Vat(Oh(L)) , with m 2 i x a i

i.e., m = i x 2i x k , etc., for some k e Var(Ob(L)) (possibly

vacuous so that m = i x R
i

x(i) CE y n i)

m i m

= Ei[<X(i) (hi)>

a m 'Ym ]

Wff(L)

with

o()= m

Now consider the converse problem: Given any P e Wff(L) with

FV(?) = x(i) x z (J ) , without loss of generality, for some

ij r Var(Ob(L)) , x(),z ( J ) Wfv(L) , and writing, w.l.o.g. in
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substitution form

P = r x ( i )  , j(J)

does it follow that the following holds, connecting dummy variable
and individual variable notation:

iI(GC) (VZ(U))(3y (12 )(())( (x() xM i y W ) ) t- 'P [x(1)'z(j)]

Generalized Comprehension or Abstraction?

Note first axioms R I,Th,22 and R I,Th,23 put in individual

variable form imply the desirable property

(GC-) (X (i)  e I  (x(i)  I 'FIX(il,z(j)]) M t l'Z-4Y[x(i), z(j)]I

which in turn, because of the obvious fact that

a b

implies always

(a b)

we then have the weaker form

(GC"1) j. ((Yx (1))(X (i) -ei  (x (i)  I 'P[x M ') zlJ)]D ) 'PCX (i),z(J)]))

the theorem of set compatibility.
But clearly by straightforward use of 3 , and in effect

letting

y {x(i )  I ?[x i),z(J) } ,

(GC") implies (GC)
Also, Ri,syn,35  implies the basic substitution form for

(f : t - J) e Var(Ar(L)) ,

L ((x(l) I T[x(i),z(j)]} -f - (x(i)  I 'P[x(1),z(J)  °fM}

etc. Furthermore, if ii II : L - (C,%) is a model, then for
OOP) = i x j , w.l.o.g. ,

.e Ar (Var(L)) 9 Var(Ar(L))

m m m

and

i{xM I ?[x i z 1 ) Il : IIj '
ll 1Il H

(See 2.3.5 for further details.)

6
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In addition, note that, e.g., axioms (Z12) , complements,
(Z22) , intersections, and (Z4) , unions , all yield set compatible
forms. For example,

(Z121 y )(3z H))( x  Mx e na  e

yields

(Z12") (L([y(  ) 02 )( ) (i) e

x(i) QI(x( ) I nt(x(i) eiy pii)))))

and (Z22) specialized to binary intersections
•1i~ 1 i (i)

(Z221) LZ((Yy(17i))(Yw' ) (az )(VX~
i

(X ( I )  
-E Z ( )  H: (( ( ) (i) )&( x (i)e W ( 2 i

(12 )))i

implies
i ( ) ) (i) (12 )

(Z22") Lt((Vy(')(Vw (n )(az )(VX ) ((x E Z ) :

(x {x () (x (i) 4Ei y (x (i) e' w (1  )1}1

Thus we make the new compound definitions for the arrows

CYW )  (x(i) I nt(x(a) Y(a

i i wnl i

y ( 1 1) n w ( ( x i ) I ( x ( 1) e y i  & ( x (  ) a

yi i y 12i
) () w i

()U( ) ( 1 x21 ) Ci) (x~1 ) Ei y ) or (x' . ))(

and more generally, for any combination of C , n , u

comb(C,n,U)(y(1
}  .... y (a )d {x1) 1com(1, )...... l ) (i ( i

= ) (x comb(Cnu)(Cx ejy ) /i Y (m)

with similar definitions holding for multiple arguments (replacing

single x ( i )) and cartesian products and sums.

For related results, see section 2.3.5 (b)

(e) Summary

Many difficulties inherent in developing the basis for a multi-
valued set theory are discussed in Chapter VI, (172] (especially,
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pp. 236-254). Many competing set theories abound. The positive
results for Maydole's advanced set theory relative to LR  are

1
encouraging. However, sct tbhories for other logics such as the
general truth functional one generated by triples of negations,
t-norms, t-conorms (see section 2.3.5), may also be worthy, although
for such logics, it may be difficult to show any soundness or com-
pleteness properties, or similarly, it may be difficult to show
inconsistencies are not plausible.

2.3.5 General loqical systems and dispersions.

(a) Discussion.

In addressing the problem of determining the state or states
present (or partially present) of a given system of interest, i.e.,
the uncertainty of the system, an uncertainty model must be es-
tablished, which in some sense captures both the system and its
uncertainties. One way this can be accomplished is through a com-
plete intuition/heuristic approach, where a sli,gle individual or
panel of experts considers the problem at hand and in a coordinated
manner, using his/her (or their) pooled knowledge, attempts a solu-
tion. This is based on the general principle that human beings can
successfully atta=k very complicated problems by use of common sense
and learned knowledge. Another approach is to establish a rigorous
systematic model of the problem, consisting of a choice of measures
or (possibly generalized) distributions or dispersions, together
with some collection of logical and other types of operators acting
upon them according to some prescribed calculus. We call such a
model, a general logical systam. Another approach is to attempt to
integrate the first two approaches by some kind of feedback-loop
procedure, so that the model of the problem reflects the experts'
knowledge and, at the same time, these experts may be used to over-
ride all decision making outputs or to adjust or correct the model
in an adaptive manner. The last approach serves as the basis for
the concept of knowledge-based systems, which play a central role in
the AI approach to complex problem solving.

In Chapters 8 and 9, some aspects of knowledge-based systems
will be considered in addressing, especially, problems concerning
the combining of evidence or clues describing the states of a system
that are present, represented in terms of parameter vectors.

General logical systems may be considered from the following
gencral viewpoint:

A general logical system is essentially a semantic evaluation
of a formal language in a collection of (deduction) categories which
in some sense generalize SET, the category of all ordinary sets.
In general, these categories do not have a topos structure and con-
sequently, may not be sound and complete (deductively). However, it
is hoped that at least "locally" - in the same sense, that local
theories are developed for disciplines such as for quantum mechan-
ics, topology, mathematical-biological systems, and number theory -
the system will be consistent. See related comments on adaptive or
"local" logics by Bellman (13'] and Bellman and Zadeh [15]. The
first reference also contains interesting comments on uncertainty
decision making and artificial intelligence by one of the eminent
scientists of our time. See also Haack's texts on nonstandard or
deviant logics - (100] as well as [101]. In addition, see section
10.2 concerning the various controversies involving fuzzy logic.

The following discussion is based in part upon the properties
of several categories and topoi which in a natural sense generalize
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or fuzzify SET: (See section 2.4 for a detailed presentation of
these entities.)

Candidates for the range of the semantic evaluation represent-
ing a general logical system include, naturally, Higg(H) , Fuz(H) ,
Fuz_(H) , and Gog(H) . First, consider Higg(H) . As a topos, it

hae "nice" properties, as mentioned above. However, it is often too
strict a structure, since A = min , v = max , and the rest of the
intuitionistic logic structure are not compatible with general nega-
tion, t-nc;,n or t-conorm structure (see 2.3.6), the latter being
more suitable for natural language/real-world use. (See, e.g., the
comments of ThOle et al., [250], e.g.) In addition, Higg(H) has a
more restricted and complex structure than Fuz(H) , as the investi-
gations in 2.4 attest. On the other hand, Fuz(H) is not a topos,
as seen in 2.4, and is also restrictive in that intuitionistic logic
- except for equality (x) - is required. Although some Fuz_(H) 's

are topoi for appropriate choice of - (see 2.4) , they have rela-
tively sparse structures. Hence, one is led to consider their union
FUZ(H) . But FUZ(H) has still some typpe of intuitionistic logic
on it; in part jcuaz, Fuz(H) still depends highly on A and v in
the definition of its arrows. (See also Pitts' recommendation for
Higg(H) in place of FUZ(H) [203].)

The remaining candidate Gog(H) , which in one sense is close
to Fuz(H) in structure - no intuitionistic logic structure -
indeed, no logical structure - is required for its arrows. In par-
titular, using the fact that t-conorms or copulas are bounded below
by v , we can consider the subclass of arrows in Gog(H) exactly
connecting objects in Gog . This subclass of arrows will yield a
subcategory of Gog(H) , due to the associativity of t-conorms. How-
ever, even this may not capture all operations of importance, such
as copulas and co-copulas - which may be non-associative - as used
in Sklar's Theorem for joint distribution functions (see 2.3.9).

In any case, we will first define a general logical system as a
semantic evaluation

II II : L (GOG,Sub)

where

GOG L U (Gog H),Logica)
ad a

for some index set I , and where each (Gog(H) , Logic0 ) repre-

sents Gog(H) and a collection of logic, quantifier, and possibly,
foundations operators (see 2.2.2) acting upon Gog(H) , which for
simplicity is denoted Logic a

Often a general logical system contains only a small list of
basic operators such as "nt","&", "or" as simply (nt, &, or)

Next, for =ny choice of i e Var(Ob(t))
define

i~i' = (fil (I), iiill(2)) d (Xi.,G ) E Ob(Gog(H))

where

X i e Ob(SET) , :X.-. H' 1 1
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and we define generalized or fuzzy set A i as

with membership function

dA J jj( 2 ) =A. = 1
.1

For any j e Var(Ob(L)) such that

lljIl (2 )  = 1
H  I H  : X 1 1H (constant)

identify flIJ1 = (XJ, IH) with 0

For any j e Var(Ob(L)) such that

= TH , TH : Xj TH (constant),

identify Itjl = (XjTH) with X e Ob(SET)

Next, for any X e Ob(SET) , consider:

d _ )9(X) {A. I i e Var(Ob(L)) and 'till(I )  
- X)

and assume there exists iX e 5(X) such that

liix = X .

We call I(X) a class nf neneralized or fuzzy subsets A i (=i)

of X

TMX) 9 (1111(2) I i e Var(Ob(L) and Ililj(l) = X) HX

We call T(X) a class of dispersions or generalized (or fuzzy)
set membe,.,.ip fanctons IA( e) over X.A.

Depending on i i , of course, often we may have T(X) = HX
for all X e Ob(SET)

We assume that If II(2) : Var(Ob(L)) - Ar(SET) is injective.
Related to this map is the membership function - map 4 , where

: Ob(SET) - Ar(SET)

where for all X e Ob(SET) , O(X) e T(X) where for all A i e 9X),

P(X)(A i) j = A 1 iti(2) = .I A1

Note that cP(X) : 7(X) 9 9(X) is also injective, for each
X C Ob(SET)

Suppose for convenience now H = [0,1] 0
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Let or be a given t-conorm (see 2.3.6).
Let f : X-i X, , g : X -. Xk be ordinary functions with

ordinary composition gof Xi - Xk  Consider now any
e i : X i - H , but e : X - H and k : Xk  H defined by

e (y) Por (a i(x)) =  cr (@. [ f -  ] (x ) )  2: V e (,x))

kef- (y) Xf(y)

all y e X. ,

so that in particular, for any x e Xk
.(f(x)) = P (9 (x')) ,

9 j or a ix
x' f (f(x))

and hence f Ar(Xiei),(Xj,e)(Gog(H)) in the above "exact" sense.and1enejfj'A

Note the similarity of the approach here with that of a large classof functional extensions considered in 2.3.7.
Analagously, we may define for all z e X k

k(Z) = or_ (0j(Y'))
y'eg (z)

yielding similarly g e Ar (x ),(Xkk )(Gog(H))

In turn because of the associativity of or , it follows that for
all x e X i I

ek(g(f(x))) =( y ))

y'eg (g(f(x)))

= or 1  (e%(xl))
x'Effly , )

y'eg- (g(f(x)))

= ' or (°jjx'))

xle(gof)- (gof)(x))

= ek((gof) (x))

and hence gof 6 Ar(Xie i),(Xkak)(Gog(H)) also in the exact sense

as above.
Conversely, given any (Xi,9.) , and any (X.,e1 ) e Ob(Gog(H))

does there exist some f : X. - X. such thata j
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0j(f(x)) = o(i(xl)) , for all x r X i ?

X'f- (f(x) )

At least one such f always exists, provided 9 i  and 0 are

normable, i.e., there are points x. e X. , yo E X. such that

(x.) = TH and 0j(x.) = TH and that 9j is continuous.

In any case, we have a well-defined subcategory (Gog(H ,por )

of Gog(H) with possibly some empty classes of arrows, i.e.,

Ar (X )(X j, ) (Gog(H),or ,

for some pairs (Xi,0 i ) , (Xj, 0) E Ob(Gog(H)) = Ob(Gog(H),o r

Furthermore, we may afix other logical operators such as a
negation nt : H - H and t-norm & : H x H H. Of course,

these operations do not affect the category structure of Gog(H)
(and hence (Gog(H), or)) except to be used in computing semantic

evaluations for various elements of Wfex(L) , i.e., well-formed
expressions, as shown, e.g., in sections 2,2.2, 2.3.2, and 2.3.6.
(See also section 2.6 for extensive examples of the evaluation of
natural language forms via formal language.)

Thus, in summary, an important class of general logical systems
may be indicated as (CQ,(; T) or (4nt'&'or; T) where

: Ob(SET) - Ob(SET) or more specifically T(X) 9 Hx , for each
set X .

General logical systems are related to L-valued logics, which
are generalized by Czogala t44''' ] to probabilistic L-valued logics,
using Hirota's "probabilistic sets" [111).

Again, it should be emphasized that dispersions as discwssed
here generalize the concept of membership functions of ordinary
sets, i.e., functions of the form

1 iff x e A
A(x) = 0 iff x 4 A

where A is an ordinary subset of X , x e X X also an ordin-
ary set. Even before Zadeh [276'1, Klaua [139] and others (such as
Watanabe [268]) extended membership functions to, in effect, gener-
alized or fuzzy subsets of an ordinary space. See also 2.3.6 for
the development of families of operators upon such membership
functions, extending ordinary set operations, including complement,
intersection and union. Indeed, the manipulation of classical sets
and functions, independent of any generalized set considerations,
has often been facilItated by the employment of (classical) me-
bership or "indicator" functions of sets, such as will be found in
any standard textbook on Lebesgue Integration. in conjunction with
this idea, see the recent paper of Morrill [179'], where the use of
membership functions for teaching set theory is emphasized - but
cumpletely ignoring the fact that the same or similar formal manipu-
lations may be used to discuss generalized sets! Furthermore, after
a moment's thought, the category theory concept of subobject (or
functor Sub - see Appendix 1, end of section 2.4.2) is also compa-
tible with the idea of a membership function.

0
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Two obvious examples of generalized sets in our everyday lives
are given below:

In the clothing business, size of women's clothing is in gen-
eral determined by height and weight through a few simple natural
language labels such as "petite", "average", "tall", "full figure
short", full figure tall". Despite the common use cf these terms tD
describe ordinary sets in height vs weight space, for purposes of
convenience, the bcundaries of these "sets" should actually be fuzzy
and could be so indicated by lightening the colors near the boun-
daries, etc.

The above remarks also apply to visual examples such as a cloud
in the sky. Thus, we could conceivably divide up a region of the
sky into cells and determine the percentage of black vs white (vs
grey, etc.) pixels or primitive picture dots within a given cell,
znd in tursi convert the percentage of black ones direct'y into a
membership function. Thus, for cells well within the "boundaries:'
of the cloud, membership levels are approximately unity, for cells
near or on the boundary area, membership levels drop and for cells
well outside the boundary area, membership levels are approximately
zero.

These ideas appear also to be related to the classical notion
of the density of a set (see, e.g., [181'], pp. 261-263) and, as
well, to extended-dimension concepts as presented in Mandelbrot's
exposition on fractals, i.e., highly irregularly-shaped geometric
objects, typically appearing in nature [167']. In addition, inde-
pendent of fuzzy set theory directly, Mandelbrot also considered, in
effect, generalized set membership functions over "gaps" of frac-
tals arising from random set coverages (167'), p. 366). See also
Chapters 3 - 5 of our text, for various relations between random set
coverages and generalized set membership functions.

Three general examples of general logical systems are given

in the previous paragraphs, we have seen how the membership
symbol and its natural evaluation determine membership mappings. A
membership mapping ( depends on 11-11 . However, for simplicity,
when no confusion is possible, we will drop this dependency in our
writing, but not from our mind! The membership mappings turn out to
play a crucial role in developing the concept of general logical
systems as we now proceed. The motivation for out general defini-
tion below will '. clarified through examples.

Examples.

l. Boolean system. Let L be the formal language of ordinary
predicate calculus. For each set X , g(X) is the class of sub-
sets of X , and T(X) is the class of all ordinary set membership
functions over X

2. Zadeh's system. Let I be the formal language with
Lukasiewicz logic R For each set X , U(X) is the class of

xall generalized sets on X , and M(X) = 0,ol] , the class of all
dispersions over X

3. Probabilltic smstem. Let L be the fo-mal language of
Probability Logic (see section 2.3.3). Let Y e Ob(SET) and choose
X - Y(Y) , where X is a a-algebra of subsets of Y . Then 9(X)
corresponds bijectively to T(X) , the class of all probability mea-
sures over Y (See also section 2.3.9.)
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b) Set operations for general logical systems.

Note again (see section 2.3.4 (b)) the relationship between
Wff(t) and all generalized sets through the Axiom of General
Comprehension (GC) and/or the contextual or operator approach to
class abstraction.

On the other hand, we have stated (2.3.4) that (see originally
Maydole [172)) if set axiom (GC) is accepted in conjunction with
any logic of interest (see again section 2,3.4 for the list), except
for tR , a Curry-like parado', and hence inconsistency, occurs.

1
More generally, Maydole [172] showed that (GC) in such cases
implies the validity of several inference rules for all logics
of interest, including quasi-universal and quasi-existential
instantiation, as well as other quasi-forms (quasi-modus ponens,
simplification, absorption, etc.). (He also showed that whenever
the above inference rules hold, a Curry-like paradox indeed
results.)

Now, many set theory axioms (see 2.3.4 for various listings)
will be of the form

Q(i P ,

where Q consists of a string of universal and/or existential
quantifiers and P and V are (in general, open) wff's for
formal language 1. For example, complementation (Z12) , car-
tesian products (Z13) , unions (Z4) , etc., all fall under this
classification.

It follows readily that for a given general logical system with
the usual logical constants nt , & , or , * , --= e Loc(l) , if the
quasi-form inference rules (section 2.3.4) such as (QUI), (QEI),
(QME), (QS), etc., hold, than any such set theory axiom as mentioned
above will imply at least in an asymptotic sense the existence of
corresponding class abstract "sets". The term "asymptotic" may be
omitted, if the stronger non-quasi inference rules, (UI), (EI),
(ME), etc., hold.

As an illustration, consider the following development for
(Z12) , where i e Var(Ob(L)) is arbitrary, ei(x,A) is replaced by

simply (x e A) , for any x,y,z,. .. e Wfvi(I) and general sets

A,B,C .... e Wfv i(L )  :

From, e.g., Maydole [172], p. 77,

(Z12) = Q(p = F T)

where

S= (P,a) d= (Era)

' '(P,7) d nt(pe,)

Then, applying (QUI)

II (Z12)11 = 1

S
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implies that for all t

11 (3a)(VA) (Lt(A,a) - P (A,t) ) 1

In turn, applying (QEI), it follows that for all t and each inte-
ger m Z 1 , there is an am such that

IIV( (,a m) f= T (A,t))l 1 1 - I/m

Next, again using (QUI) we obtain, for all t , each integer
m 2 1 , a corresponding a , such that for all vm

11(v,a m) C= '(v,t)II 2 I - I/m

Finally, if quasi-material equivalence and quasi-simplification hold
for z (see Maydole [172], p. 124), then if il II is truth function
with respect to * and 11*11 is continuous, then for all t , each
integer m 1 , a corresponding a exists such that for all v' m

111 (va M) , f (Vt)II 1 < I/m

th
We could call each such a as above the m approximating com-m
plement Cm(7) of 7v

Hence in an asymptotic sense, for any given - e Wfv .(L) we
1

can postulate Ci e Wfv i(L) such that

tijo C *t1 1nt(j3 e t ) I

Of course, if the stronger inference rules (UI), (EI), (ME),
etc., hold - as is true for Lm  or Gm - then the above proof may

be appropriately modified so that the asymptotic interpretation may
be omitted.

Furthermore, for (as was stated in section 2.3.4),
1

Maydole's modification of (GC) together with Hayes' logical axioms
will imply the validity of the quasi-form inference rules and yet
consistency will also hold (Maydole [172]), although the logic is
deductively and logically incomplete. Hence, at least In an asymp-
totic sense, complementation, cartesian products, intersections,
unions, etc., all may be safely defined - with no paradox derivable.

In any case, motivated by the above, we can define, for
example, the following basic general set operations, for truth
functional systems; through a class abstract-like approach. (See
also the previous discussion in 2.3.4 (d).)

(1) Complementation

C : Wfv i(t) - Wfv i(L)

12 1S
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For any A e Wfv p L) , there is a

CA e Wfv .(Z) such that, for all x e Wfv i(L)

nt(x e A) = (x e CA)

whence

11 nt ( x e A) 11 = 11 ntll (11ix e All 11 I ntll (11 All (11 xl
= llntli( 4 A~x)) (n(P~)

= lix 4C CAl

= CAW )

(ii) Cartesian product

x Wfv rZ (L) x Wfv a (L) -4 Wfv a xi(Z)

For any A e Wfv .(Z) , B e Wfv (L) and any

x 4E Wfv i(L) ,and y e Wfv W I

(x C A)&(y e B) =((x,y) c A x B))

whence

II (x 4E A)&(y e B)I iI =l&ll (hAl(lixfl ) , IIBII (Ilyll)

= O&(A(x) ' Y )
11 (xy) CE A x BI1

= AxBx'y

(iii) Intersection:

nf: Wfv .(L) x wfv (L) -+ Wfv .L

Specialize cartesian product in (ii) for
i x = , xy

(x C A)&(x e B) = ((x,x) r= A x B) = (x e AI1B)

whence

ll(x e A)&(x e B)ll=I(I ~ ) ~~)

= 'FAx B(x'x)
= lix e AnBI

= A11B(x)

(iv) Cartesian sum

Wfv (L) x Wfv r2i(Z) -.Wfv Rij/

For any A e Wfv .(Z) ,B 4C WfV .i(L) and any

x G Wfv i(L) ,y e Wfv.(L)

(x CA) or (y e B) =((x~y) e A t B)
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whence, analogous to (ii),

11(x e A) or (y E B)11 = Por( A(X)' B

= AtB(xy)

(v) Union

U : wfV x(2) X Wfv l(e) - Wfv .(z)

Analogous to (iii), specialize cartesian sum in head-
ing (iv) for I = j , x = y :

(x e A) or (x e B) = ((x,x) e A t B) = (x e AUB)

whence

1(x e A) or (x e B)11 = (Por (0A(x), OB(x))
= (AtB(x,x)

= l1x e AUBII
= 4AUB(x)

Symbolically, we may write more generally,

(xI ... xn) E comb(nt, &, or)(A 1 ... ,A n)

= comb(nt, &, or)(<x1 e AI>,...,<x n e An>) I

where some of the Ai's and/or x.'s , independently, may be the

same, and "comb" refers to some combination of operators. In the
above, we could also use nt, x, t, * , etc.

Of course, all of the above operations in (ii) - (v) may be
extended in the obvious way to an arbitrary finite number of
arguments, and further by standard limiting procedures, to an
arbitrary number of arguments. Note the use of 4 nt for Until , &
for 11&I1 , qor for 1lorl , reminiscent of negation, t-norm and

t-conorm operators discussed in section 2.3.6. In fact, often the
general logical system will be such that nt ' &' or are such

operators.
For non-truth-functional logics such as Probability Logic, the

above relations must be modified.

(vjSubset relations may be defined in two different ways:

For any i c Typ(L) , A,B e Var i(L)

(a) A S B iff , by definition,

OA S OB pointwise over Xi

or

(b) IA BII d 11 & ((x E A) = (x e B))1I , etc.
xeX i

I
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Subset relations for generalized sets may be defined more
systematically as follows: 0

Let B e Var(Ob(L) Then for any A e Var(Ob(z))

A Q B iff IAli IIBI: iff u1All e Sub(IiBii)

Now, the generalized power class of IIBII = (XB 9B) is

Sub(XBOB) = ( XB - H ) -

and hence

11lAll 9 11IB11

iff

IIAII = I or (XBV) , such that B <

Also

ilnB1 = 1i121 BJ (Sub(XB.9B) ,T)

(See 2.4.2 (D) for basic properties of Gog(H).)

.VI !) Membership relations for generalized sets are obtained from:
Let x e Wfvi(L), A E Wfv i(L) , i e Var(Ob(L)) Then

,IxeA, = ilxii lei,1 ,,Al

Consider first lie il

Ie e Sub( li, x lin 11)

= Sub((Xie i ) X (( IV : X i  H and ,T)

= Sub({(xr) I x e X i. : Xi  H and V s a.}, 9i)

where for all y e X V : X i -# H , V

lie 1 l1l(X,IP) x li E 11 IF

-? (x) WV~x)~ i(x)

Hence,

lx e All = 1All (1lxl)

= A(Ilxl

A linguistic example is "John is happy".

llxll = John ,

IAil = happy : X -. H e li2ii ,
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'ill= X i = set of humans

i ill HX
IM II 1Q1111 = H

X.

IhEI : X. x H - H (with restriction)
1

"John is happy" = John E happy

See also sections 2.3.2, 2.6 and Appendix 3 (iv) of section
2.4.

Let us consider in some detail the semantic evaluation in 2.3.4
(d):

q l{X ?[x(i) ,y(J) l : , h111 2I1 E Ar ,Jlti l(Gog(H))

m m 111,l

Thus,

xi
q : X. - Sub(lill) = (f I f E H with f - e i pointwise)

with the restriction

9. T(q(.)) , pointwise,J

i.e., no restriction. Before defining 9 consider the semantic

evaluation of I and V[,y( )] : Since the evaluation is
essentially in (Gog(H),Sub) , it follows that

['PhI E Sub(Ilo(r) l)
= Sub(IiII x hijh)

= (f I f e H X , f iC. )( ..-), pointwise)

Next consider, for any t e Var(Ob(Z)) and any (g : ll1l- I lill

X Ilj11; ilkll) e Ar(Gog(H)) . It then follows from the definition of
pullbacks (see 2.4.2, Appendix 1) that

Sub(g) : Subilil - Subilkll

where for any h e Sub(lilh ) , letting mono (h : 11 - I t1) E
Ar(Gog(H)), for some n e Var(Ob(L))

(11lnil.X 11 kll )

Sub(g) (h) = (projl1kll : ill x 1ikll 11 ulkil
h,g

where

linil x likil = (Xn  x X, h(. ) A g(.- ))
h,g

so that for any (s,t) E Xn x Xk

Sub(g)(h)(s,t) ! h(s) A g(t)

I
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In particular, note that

:i ~ II Ilmll - 1 IIiii 

IIY (J)ll ll l -. J11 ,

where llmll = (Xm '0m , uijl = (XJ, B ) , etc.

Let g d (i) (j >11 , with f i x j and h T . Then
m m

llr(i),, ,(J) M,>(.(.)
m 'im 2 1P1 - 1< m

= (Sub II<xI, )y >U')(uiII

= l l " ( ' ' A<llX(M "(' .."')'fllY(J) ( ' ' " ) >

In any case, we simply define q as, for any t e X , s e Xi

q(t)(s) d lly'll(s,t)

If we use the generic term "comb" for an arbitrary combination,
of operators C , x , t , etc., then for many systems, further com-
pound set operators may be obtained through the relations

comb(nt,&,or)(-. (x e A), (y e B),.•)
S(...x,y,.o) e comb(C,n,u)(.-A,B,..)

For example,

nt((x e A) or (y e B)) & (z e C)
= nt(fx,y) e A t B) & (z e C)
= ((x,y) E C(A t B)) & (z e C)
= ((x,y,z) e (C(A t B)xC))

Algebraic properties of C , x , , U , n , etc., all are
derivable from the properties of nt , & , or , = that are pos-
tulated for L . For example, let us consider associativity: From
the above definitions, it follows that for all x , y , z , A , B
C ,

(x E A) or (y E B or z e C) = (x,y,z) E (A t (B t C))

((x e A) or (y E B)) or (z e C) = (x,y,z) e (A t B) t C)

Thus, If "or" is an associative logical operator for Z , then
clearly, the two left hand sides of the above equations are equal
and hence so are the two right hand sides. Thus, associativity
holds for t :

A t (B t C) = (A t B) t C

Similar results hold for symmetry, idempotent, etc., for t as
well as analogous properties for x , replacing "or" everywhere by



Symbolization and Evaluation of Language 97

"&" Also, similar comments are valid for properties involving

both t and x such as various types of distributivity and modu-
larity. Conversely, properties postulated for , t , C , become
propertics for & , or , nt , etc., in Z . Also, similar comments
hold followiig semantic evaluations for the corresponding logics,
truth functional cr non-truth-functional. Again, see 2.3.4 for
various types of operators with prescribed algebraic properties.
For example, t-norms in addition to being required to have certain
boundary conditions also must be symmetric and associative - and a
subclass - the non Archimedean ones - will also be idempotent.
Indeed, a re-examination of the various logics of interest, illus-
trates the various algebraic properties of the semantic evaluations
of the basic logical connectors and hence (by the bijective mapping
discussed earlier) of the corresponding general set theory opera-
tors.

Compound predicates may be formed in a , the formal language
class (the counterpart of the natural language class) - and then
evaluated for truth content by putting them into fuzzy set form.

By this procedure, other more complicated predicates and their
quantifications may be evaluated, including universal and existenti-
al quantifiers, cartesian sums, and products, logical implications,
and logical equivalences. Also, subset relations and relational and
functional transforms may be evaluated.

As an example, consider the semantic evaluation here, in
(Gog(H),Sub), for quantifications and substitution:

Let L be the basic formal language and ? E Wff(L) with
(i) ( fvL adwrt

0(T) = I x J, i,j E Var(Ob(t)) x 'Ym e Wfv(z) and write

(x(i), y (j ) )  for 7[<x(i),y( J)>] , etc.

Then, as usual, letting m = i x j x k,

l~jII = (Xi,ei) , ,jil = (Xj,Qj) I

ilixjll = iiill x fljII = (Xi x Xi, 9l(.) A Gj(..)) , etc.,

PITH e Sub(o(l il)) = Sub(llixjIl)

i.e.,

iWl : X x X. - H with I111 .(.) A O(..) = A 0(.,..) ,

and, more generally, replacing <x i ), a-,)> by

(f : m - i x j) e Var(Ar(z)) , we have for the substitution T[f]
(noting formally o(r[f]) = m)

V [f] = Sub(11 f1) (II1T )

Now, llfil :lmit ltixjlt in Gog(H) and it follows from 2.4.2
(D) that

Sub(Uifil)(llill = m A (11711 o lIfII)
m

Also,

ll(YXm I )) Y'(X i ) 'm (j)),

M m YM I
SIIV(i,J,T)"i

= Itvt(It,itjt,,t tt)

- A (ei(t) -H lilh (t,. ))
teXi
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1i (3 Pi )  ) (T(P ) , i ) ) ) 1

= II (i,j,')I O

teXt

See Kwakernaak [148], Goodman [88], Hisdal (114] and Dubois and
Prade [51], p. 18, for techniques for evaluating "fuzzified" con-
cepts. Bellman and Zadeh (15] (see also [14]) were among the first
to use a restricted form of the Principle of Abstraction to fuzzify
concepts, relying on Lukasiewicz (LO )-logic (i.e., min for & ,

max for or , 1 - (.) for negation, etc.) for evaluation. Giles
(74] also has emphasized the connection with Lukasiewicz logic in
developing fuzzy logic as part of his risk-bascc subjectivc approach
to modeling of fuzzy set concepts. Skala [237] developed a number
of interesting properties of Lukasiewicz logic for use in fuzzy set
theory.

Albert (2] has proposed an alternative (but similar in many
respects) development of fuzzy set theory and fuzzy logic, within an
axiomatic viewpoint, including qualifiers such as "usually" and a
new approach to deduction.

Bellman and Giertz (14] in addition to establishing the previ-
ou ±iy mentioned mutual distributivity characterization of 70 also

suggested in effect use of a form of the Principle of Abstraction.
In practice, the required mutual distribution conditions may be too
restrictive. For example, ThOle, et al. (250] and Zimmermann (291]
have shown through empirical considerations that other forms of &

and or may be more appropriate. Interestingly enough, a basic

survey (see, e.g., Rescher [214]) of multi-valued logic shows a
paucity of choices for "and", "or", and "not" - most picking some
variation of Zadeh's original choice (independent usually of Zadeh's
work). Other restrictions may be placed upon fuzzy set systems such
as the DeMorgan relation or requiring the satisfying of certain
functional relations (again, see, [140]).

Thus, a calculus of fuzzy set operations may be established.
(See, e.g., Dubois and Prade (51] for extensive listings of opera-
tors, relations and applications.)

The basic problem of choosing, for a given situation, which
fuzzy set system (Ont ' 0& ' Oor) is most appropriate may be

approached by both empirical considerations and theoretical guide-
lines (by appealing to random set connections - see the last
comments of this introduction). (See (250], [291]; also Goodman and
Nguyen [92].) Also, modeling of possibility functions and their
modifications poses a problem - but essentially no different than
that of choosing a suitably large parameterized family of probabil-
ity density functions. (See Lakoff [150], Hersh and Carramazza
[109), MacVicar-Whelan [167], Kuzmin [147], Kochen and Badre [144),
and Dubois and Prade (51], pp. 255-264, for various modeling of
possibility functions and their operators.)

In addition, the work of Nanlun (181) should be mentioned in
regard to empirical verification of fuzzy set membership functions
through statistical data (random "appearences") in histograms repre-
senting overlapping classes - hence not necessarily adding up to
unity.

Finally, the comprehensive approach of Norwich and Turksen
(194''] in modelin; mc.bcrship functions should be mentioned where a
number of representation and uniqueness theorems are obtained.
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2.3.6 Families of truth functions.

At this point, let us summarize briefly some of the high-
lights of fuzzy set theory as originally conceived by Zadeh (276']
and some natural extensions of it. (Leech ([153], pp. 38-41 and
Chapter 6 presents "fuzziness" from a linguistic viewpoint.)

The basic building block in the development of fuzzy set theory
is the membership function

P: X -0 [0,1)

which uniquely corresponds to a fuzzy subset A of ordinary set X
If the range of @A is a subset of {0,I) , then 4A reduces to

the classical ordinary characteristic or set membership function
found in most textbooks on real analysis and Lebesgue integration.
In a related vein, G.S. Goodman (93] has pointed out that the col-
lection of all fuzzy subsets of a closed interval may be considered

*

In a sense the weak - completion (i.e., pointwise convergence) of
the collection of all ordinary set membership functions. Operations
on fuzzy set membership functions - or , in short, possiblity func-
tions - therefore extend those on ordinary sets. Zadeh originally
considered (poIntwise) 1 - (.) , min, and max as the basic fuzzy
set operations for, complement, intersection, and union, respec-
tively. However, after some thought, it is clear that many other
extensions for these operations can be considered as alternative
definitions for fuzzy set complements, intersections, and unions.
For example, complement could be represented by

Pnot(x) = (1 - xa)l/a

for all x E [0,1] ; a > 0 constant. Note the involutive property

Onot( 4Pnot(X)) = x ; all x e [0,1] ,

and that not(x) is decreasing in x with the required boLndary

(i.e., classical 0 - I logic) conditions

not (0) = I ; 'not (1) =0 ()

Another possible definition for complement could be the
intuitionistic one (2.3.3 (C))

[ , if x = 0
not( x )=
not 1 = , if I k x > 0

But this P not fails to satisfy the Involutive property and is not

All of the above definitions for 1not satisfy the boundary

conditions in eq. (*) and are non-increasing functions. We will

I
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call suca a unary operator knot : [0,1] -# [0,1] a negation opera-

tor
Intersection could be represented by

P&(x,y) = prod(x,y) dx y,

or by

&(xy) = maxsum(x,y) max(x + y - 1, 0)

or as proposed by Zadeh [276']

P&(xy) = min(x,y) ,

etc., for all x,y e [0,1] All of the above definitions are
bounded above by min , are nondecreasing in each argument, are sym-
metric, continuous and associative, as well as satisfying the
0 - I classical logic boundary conditions

(YX,1) = Pa(1,x) = x , 0&(o,x) = 0&(x,O) = &(o0o) = 0

for all x E [0,1] This implies that 4& may be extended to any

number of arguments. Such a function (& : [0,1] 2 _ [0,1] is called

a t-norm. In a related manner, union could be represented by a
2function ,or : [0,1] - [0,1] which is, similarly, nondecreasing in

arguments, symmetric, continuous and associatlve so that is is
extendable unambiguously recursively to arbitrary multiple argu-
ments. In addition, or is bounded below by max and satisfies

the boundary conditions

Por (1,x) = Por (X,1) = @or (0,1) = 4 or (1,0) = @or(1,1) = 1

or (0,x) = or(x,O) = x ; all x e [0,1]

Possible definitions for or include:

or(x,y) = probsum(x,y) x + y - xy 1 - (1 - x)(1 - y)

or

or(x,y) = bndsum(x,y) = minsum (x,y) - min(x + y, 1)

or Zadeh's originally proprosed

Por (x,y) = max(x,y) ; all x,y E [0,1)

among infinitely many possible extensions. Such a function por is

called a t-conorm. (For background, see Klement [140], Goodman
[91], and the comprehensive text of Schweizer and Sklar [226]. See
also Frank [61] and Ling [159] and Alsina, et al., [4].) 6
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Originally, t-norms and t-conorms arosefrom the concept of a
probabilistic metric space, developed independently of fuzzy set
theory [226). The recent paper of Czogala and Drewniak [44'] ex-
tends the definitions of t-norms and t-conorms, including changes in
min-bounds, max-bounds and other properties and applies these to
random variables and fuzzy probabilistic sets. (See also the
empirically-oriented paper of Czogala and Zimmermann [44"].) In
addition, intermediate operators or generalized means are considered
in some detail by Dyckhoff and Pedrycz (52).

Let nt ' & ('or be any negation operator, t-norm and

t-conorm, respectiely. Then since we may extend unambiguously, &

and or recursively (usii.g symmetry and associativity) by, e.g.

P&(x 1 ,x2 ,x 3 ) = (xl,x2),x 3 )
= &(Xl,(P& (X2,X 3) ) ,

etc.,

then &' or [O01n ],I] are well-defined for all n > 1

For n = 1 , define P&(x) = 'Por (x) = x

Call the triple of operators

gr = ( (Pn o t ' (P& ' (Po r )

a general (fuzzy) set system, operating on some given class of fuzzy
sets. Such a system extends the classical Aristotelian two-valued
(0,I) logical system.

A general fuzzy set system is said to be DeMorgan iff for any
given Pnt '

nt((x,y)) = Pcr(%r,,(x), Pnt(y))

nt( or(X,y) = (&(nt(X), Pnt(Y))

for all x,y e [0,1] , etc. For simplicity, for all of the
following definitions, assume

fnt =  I - (.), i.e., pnt(X) S 1 - X

Denote 0 as the class of all DeMorgan systems. Thus,

0 (1 -0), min, max)

1 ( - . prod, probsum)

and

= (i - (") ,maxsum, bndsui)
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are all in S , but, e.g.,

, d= (1 - (.), prod, bndsum) is not in !D

Note that if & is any t-norm,

qor(X,y) 9 1 - &(1 -- x, 1 - y) , all x,y e [0,i] , always

determines a well defined t-conorm and hence a DeMorgan system.
A copula is a cumulative probability distribution function

(c.d.f.) over R 2  such that its two one-dimensional marginal
c.d.f.'s, each nver R , are identical in form to the c.d.f. of the
uniform random variable U over [0,1] , i.e., the c.d.f. F 0  of

U is at any x e [0,1]

F O( ) = x .

It can be shown that not only any associative copula is also a
t-norm, but more generally, defining for any fixed integer n 1

an n-copula as a c.d.f. over n , all of whose one-dimensional
marginal c.d.f.'s are the same as F0 above (Sklar [238]):

(a) All associative n-copulas are t-norms.
All t-norms which are probability distribution func-

tions in n-arguments are n-copulas. For any n-copula, (P

and

x = (xI ..... n) , y = (y1  ... y ) e [0,1] n

n
lP&(x) - &(Y) I Z I & (xj) - (Y H

J=1
n
z z Ix - I
j=l

nand hence P& is uniformly continuous over [0,2]

n(b) For any arbitrary c.d.f. F over Rn, there exists
a unique corresponding n-copula & such that

F(x I .... xn) = &(Fl(xj),....Fn(xn))

all x1 .... t x ( **

where F 1*.. Fn  are the n one-dimensional marginal

c.d.f.'s over P for F

Indeed, (P = F(F1(.)..F(-)) (See subsection on

pseudoinverses of distribution functions.)

(c) For any collecticn of n one-dimensional c.d.f.'s
F.......F over R and any choice of n-copula P&, de-

1 n
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fining F by eq. (**) yields F as a legitimate c.d.f.

cver n If & s a given copula such that the nth

iterate of & is an n-copula, we say & is an n-copula

by abuse of notation.
We call the above two results, Sklar's Theorem.

(1) First, note that if V and W are any 0 - 1

valued random variables with Pr(V = 1) x and

Pr(W = 1) 9 y , say, 0 < x,y i I , then the following
bounds occur: for the possible evaluation of the joint
probability Pr(V = I & W = 1) and Pr(V = I or W = I)

maxsum(x,y) : Pr(V = 1 & W = 1) : min(x,y)

max(x,y) : Pr(V = I or W = 1) : bndsum(x,y) , ***)

for all 0 5 x,y 5 1 , the upper bound occurring for max-
imally correlated V and W , while the lower bound
occurs for V and W most negatively correlated. Note
that the case of V and W being statistically indepen-
dent yields Pr(V = 1, W = 1) = x-y , somewhere in the
middle of the two bounds.

(2) Let & be any (2-) copula. Then

maxsum(x,y) 5 4&(x,y) S min(x,y) ; all 0 : x,y : 1

with the boundaries also being copulas, since we can

write, for all 0 x,y S 1 ,

& (x,y) = Pr(V' x, W, ! x)

for some uniform (0-1] r.v.'s V ,Wl over R Then
define 0 - 1 r.v.'s V x,W x by:

d I iff V, s x
x 0 iff V, > x

d f I iff W' S x
x = 0 iff W' > x

Hence,

& (x,y) = Pr(V, = 1, Wx  = 1)

and we may apply eq. (***)

(d) For any integer n 2 1 define C as the class of' n

all DeMorgan n-copula systems tor not = 1 - (. ) Thus,

or for any such system for n = 2 is easily shown to

satisfy the relation
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max(x,y) S or (x,y) :5 bndsum(x,y) ; all 0 :5 x,y :5 1,

with the boundaries also achieved by or being the

DeMorgan transform of copulaa min and maxsum.

(e) For any n ?- 1 , min and prod are n-copulas, but
maxsum although a t-norm is not an n-copula for n 3
noting for all xl ... Ix n e [0,1] , the evaluations

min(x1 ,. .X n)

prod(xi....,x n X1**x nI

maxsum(x1 l . . x n) max(x, +. *+x n - (n-i), 0)

Furthermore, for any n-copula 0. , and all.........Xn e 10'11

maxsum(x1 ,. . x) n 5i(XI''Xn) Smin(xj, . 'xn)

noting that for

x = (X 1 ,...,X) Y y y,...,y) 1 0,1] 1 the variations

over the n-interval J(x,y) are

Var J(Xy)(min) ma= ~ i~l '''n -mxj, .. ,xn),

Var J(xy) (prod) =(y I x 1).. yn - X n)I

and

Var ~ n(maxsum) n1 a
J(i 1 f 2

and hence maxsum is not an n-copula for n 3 (but it
can be verified to be a copula, i.e., 2-copula) .Denote the
class of all n-copulas by C n

(f) Consider now Yager's family of t-norms [275']

For all real p I < p < +- each 4i&(p) is also an n-copula

for any n a 1 ,since generator h P(t) =(1-t)P as a function

of e 0,1 yildsh p(y) -1 - y ,a complete monotone

function over R (See later in this section for definitions
and properties of generators.)

It also follows easily that for any n 1

P-1

= maxsum(x1 ,.. .,xn)

uniformly in all x = (x1 ,...,x) e (0,1]n . i
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In particular, let x e [0,13] be arbitrary and
consider maxsum(x)

This implies

(1 -x)+* x( - n) > 1

Hence, there is a p > 1 such that

I n

whence
n /

t4P&p (xl,* **xn) I - (min( Z (1 x x)P, 1 ))lI

=0 = maxsum(x)

In any case, the above approximating property shows that
the lower bound f or n-copulas by maxsum cannot be improved
upon. Similarly, for any n-copula

max(x I ...,x n) :5 (Po(xl,...'Xn) :5 bndsum(xl,.  'Xn)

with Yager's, p as p -* 1 + uniformly approximating the

upper bound bndsum (the latter, not an n-copula for n 2: 3).

A general fuzzy set system I is said to be mutually distribu-
t ve iff % x r( ' ) r(P ~ ~ ) % ( ~ )

or (x, p%(Yz)) = (Pa((or(x'y)I or (x'z))

for all x,y,z e [0,1].

A general fuzzy set system I is Idempo tent iff

PCx'x) = %r (x,x) = x ;all x e [0,1]

A DeMorgan general fuzzy set system is said to be
semi -dis'ributive iff, for all x,y,z e [0,1]

%~(x, or (yZ)) = %~(x'y) + W&x'z) - %&(x'Y'z))

Let I denote the class of all semi-distributive families.

A general fuzzy set system I is said to be Arch imedean iff

%(xx)< x for all 0 < x < 1

and
(Por (x~x) > x for all 0 < x <1.
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Denote the class of all Archimedean systems by Ar

Note that F0 = (1 - (.), min, max) is not Archimedean. The

following important result will be useful:
For any x,y e [0,1] and any t-norn if

(P,(x,x) = x or c,(y,y) =y , then *&(x~y) =min(x,y)

(Proof: Suppose x < y.

(1) If 4p,(x~x) = x ,then since

x = &(x,x) :5 &(x~y) S a(x,') =x

the result follows.

(2) If Oayy,y) = y and 0&(x,x) < x (by case (1)), assume

(P&(xy)< x .The function f y o a6( ,y) is continuous with

f y(x) < x < y = f y(y) .Hence there is a z I x < z < y with

f YzW = x

x > a(x,x) = Oa(pa(z,y), y) = az a~~)

= O(z~y) = x

yields a contradiction to the assumption.)
An Archimedean system Is is strict iff Oa and ' or are

2
strictly increasing over (0,1)

A DeMorgan system I such that

,(~y)+ ,(x. 1-y) = y ;all x,y e [0.1]

is called exchangable.

A general fuzzy set system ~5 such that

Oor (x,y) =x + y - p,(x,y) ;all x,y e [0,1]

is called Frankian. (See Frank [61J for properties.) Let g1r be
the class of all Frankian families. Note that the Frankian property
has essentially the same form as a modular form or valuation for
operators 6c and or over [0,11 . (See, e.g., Birkhoff [17].)

Yager's family of DeMorgan fuzzy set systems I has the forms
(' ( 1 :5 p : +) where

9 (p) (P,(p)' or,(p))

with

4P~ ~ &1P x~) I- (min((l-x)P + (1-y)p, 1))l1/P

all x,y e [0,1] ,etc. Denote this class by V.
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Note that

= (1 - (.), maxsum, bndsum)

= (1 - ('), min, max)

Let J be any at most countable (or finite) non-vacuous index

set. Let S g {9, 1 j e J) be any collection of Archimedean fuzzy

set systems 7 = (not' &( J ()or )) , with *not fixed (usually

to 1 - (.)) . Let mapping p J -* J be given and also let

K I{[a ,b] 1 0 S a < b 1 1 , with all closed intervals (aj,b.]

for distinct J's be disjoint, j e p(J) , such that U [a.,b.]JEp(J)
c (proper) [0,1])

Also, for any - d [a,b] , 0 5 a < b 5 1 , define the affine

operator L [0,1] - [0,I] and its inverse L , by, for all
u e [0,13 ,

L (u) - a + (b-a).u

L7 -(u) = (u-a)/(b-a)

L7(L, I(u)) = L -1(LI(u)) S u

Then the ordinal sums &(, p, K) and or( or' p, K) are

defined by, for any x,y e [O,l)

L j (&( )(L j (x ),L  - (y ) ) ) '

d iff x,y
, K)(xu) for some J e p(J)

min(x,y) ,

iff x,y e [0,1] are otherwise

L'I lO°r (J)(L - (x), L (y))

or(tor , p, K)(xy) d iff x,y e
for some j e p(J)

max(x,y) iff x,y E [0,1] are
otherwise

where

S[ajb ] , a E p(I) ,

and

7(7, p, K) 4 (#not' #&(P &' P ' K) ' or(or' p, K))

I
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is called an ordinal sum of systems 5 , with o(7) defined as the

collection of all possible ordinal sums over 5 fixed. Similar

notation may be used for only the t-norm or t-conorm part.
Note that ( p, K) is locally Archimedean over each

2[aj,b.I , since P&{(&, p, K)(x,x) < x for all x e [a.,b.] , and

otherwise , p, K) is locally a min. Similar remarks hold for

'Por( or , p. K)

Theorem

(i) Given any , p and K as above, V(Z, p, K) is a
well defined non-Archimedean fuzzy set system - since for any
X c [0,11 - U (a.,b] ,I

JEP(J)

& (P&, p, K)(x,x) = min(x,x) = x

Sor( or, p, K)(x,x) = max(x,x) = x

(ii) Any t-norm a is either min, an Archimedean t-norm or

an ordinal sum (of t-norms). Similar results hold for any t-conorm
being either max, Archimedean or an ordinal sum.

Proof: Suppose P& is neither Archimedean nor min. Then let

M {x I x e [0,i]& a(XX) < x)

It follows from the continuity and nondecreasing argument properties
of , that we can write w.l.o.g.

M U [a ,b
Jj J j

for some non vacuous, at most countable index set J with [a.,b.]'s

all disjoint, aj < bi , and with M c (proper)[0,l] , such that

= x for x = aj or b
< x for all a. < x < b

jJ

Now for each j e J , and all x,y e [aj bi ] , j e J , we have

the identity

-i -1 -1

(xy) = L, (L &(L (L I (x)), L (L (y))))
&x)= L7 I(x JL . J J

= L (@&()(L -l~x , L -l~y ))j
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L (-l&aL j(u), L (v)))

for all u,v e 10,1) , where it can be shown that (J) is a
2

legitimate Archimedean t-norm (over [0,1] )
2 2Also, for any (x,y) e [0,1] - U [a ,b ] , if x = y , thenjeJ J

P&(xx) = x , by construction. If x < y , say, then there exists

z , x < z < y such that (&(zz) = z , from which it follows (see

eq. (I)) that *&(x,z) = min(x,z) which implies,

0&(x,y) = min(x,y)

Thus, for all x,y e [0,1]

0&(x,y) = 0&,&, id, K)

0&= (a))jeJ 0 id =_ P :J- J , as given above.

Similar results hold for any t-conorm with respect to max,
Archimedeaness, or being an ordinal sum.

Extend the definition of L and L -1 to be defined over77

[0,132, where for any V E [0,1] 2 , letting 2 1 and

d
= (a,b) ,

L (V) al2 + (b-a).V

L -I(V) = (i/(b-a))(V-al2 )

1 -1
yielding L,(L, (V)) = L7  (L (V)) V

Thus, if F is any cumulative probability distribution func-

tion (c.d.f.) over [0,1] 2  FoL is also a legitimate c.d.f.

2over [0,1]

Hence if ca is a family of associative Archimedean copulas so

that for any j e p(J), &(U) a copula and hence cumulative proba-
bility distribution function (with uniform marginals),

- o-1
F

2
is a legitimate c.d.f. over [0,1] , noting that for any

V = [x] [0,1] 2 , the special cases

y
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0if V G J (V I X 6 a or y < a.)

2 , if V G J (V x Z b and a y
b a 2,j

iff V J {V jy b and a x S b Ib a 3j

Sif ve 4,j d (V I x 2 b and y 2 b-)

Suppose w.l.o.g.

0 Sa I < b1 < a 2 < b2 < ... I

Define intervals

r [bj_ ,  aj] , j = 1,2 ....

where b0 d 0 , if a1 > 0 , etc.

Also, denote, as before, min to be the t-norm representing
mini-mum, noting that min is a legitimate c.d.f. over (0,11
representing the distribution of a point uniformly distributed over

the main diagonal of [0,1] 2 . Indeed, min is a non-Archimedean
copula. Then, for J = 1,2,3,...

G d minoL -

2is also a legitimate c.d.f. over (0,1] , where
x - b_ y- b_ 1

G (V) = max(0, min( 'a. - b 1  M
3 a j-1 j_ bj-1

with the special cases

0 , if V E K2  (V x 1 S b or y _

dif V e K 2 ,j (V I X a and b. 1 5 y 5 a .

Gj(V) = 1a j-

-bj-, if V e K3, ={V ]y and b, Sx a)
*--b . and y3>ja d)

I if V e K4,j = (V 3x a an

It readily follows that all v 2 2 ' J 2,j J 3,j K2 , j K3,j

J = 1,2,3 .... are essentially disjoint (except at boundaries - see
diagram below).
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I I IJ3 21 Ill 3_ 4
1 IK  I ' I I 1

K j I 3,21 - - 3 __
K 1 3,11 1It 2 1

3,l - 2 1 2,2

2- K2 , 2

2-I 1 2,1

Ki 2,1--72--1

I I I I

b = 0 aI  b I  a2 b2  a 3  a 4 1

By using these properties, it can be verified directly that any
ordinal sum of associative copulas is also an at most countable

probability mixture of c.d.f.'s over [0,1] 2 :

a ' K)= Z (b -a ).Fj + Z (.S)
j2:1 J J2 1 j 1

where

Fj = (j)o-

0 @(J)(x,y) = h -1(min(hi(x) + hi(y), h(O)))

where h : [0,1] - [0,+-] is monotone (strict) decreasing convex

with hi(1) = 0 , 0 < h (0) ; + , and G. is as before.

Now

(i) For all V =[] with

V Q M1 d (V I V e [0,1] 2 & hAx) + h.(y) a h(O))

20&(j) (x,y) a 20
exay dxdy

(ii) For all V = [X] with

V E Nj - (V I V e [0,1]2 & h (x) h h(y) : h(O))

0 2 (J) (xY) 2 h I (h (x) + hj(y))
03 exey exey

S-Dh i(x).Dh i(y). (D 2 h (O& (J) (x,y))

((Dh ) (H & (j) (x,y))) 3
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= (D 2h )(h i(x) + h i(y))hDh i(x)-Dh i(Y)

d iq(h i)(X,y)

:5 D2 h( (i)x~y)/Ih i (X,y))j

d #c(h.i)(xy)

by using the fact that always

(P&(j(xy)S min(x,y)

and the convexity of h.i
J2

Hence, for all V [ X]j e (0112

~XY(b~ aji) (b a- a)

Consider now Frank's family (the modular t-norms) of Archime-
dean t-norms as 0 < s <+*D , where it can be shown each O'

is a copula, since the canonial form is

a' (x,y) =h s-1 (h S(x) + h 5 (y))

= log(i + (s X_ )(sYl)/(s-l))/log s

with generator h 5given by

with limiting cases s 1 and s=

h(x W -log x

and

h 4c (x) 1 - x

yielding

0,,1 (x~y) x-y _=prod(x,y)
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and

,,-(xy)= max(0, x + y - ) maxsum(x,y)
all x,y e [0,1)

and clearly h5  [ 0,1] - E0,+-o) is nonincreasing convex with

h s (1) = 0 h5 (0) += +

S

D2h 5 S(x) -log s) . X s = log s ) 2.+1 + X 2

2 (s 2 1 (s

0 .

Note also that since

-log (sX - 1)(sy - 1)3 h h(x) + h (Y)

h h5 (p '(x,y))

-~logS -

I S-j

s I (s x - 1 )(5 y - I)/s - 1) all x,y E [0,1)

Thus, for all x,y e 10,1),

(D hj s( ()r 1)2
2D S)(SX,) = (log ss- - sx 2 s )2(s &, 1)(5x 1))(s

Dh s(4& (.X'y)) = (-log S).4I + x s~ -

and thus

q7(h S)(x,Y)

-(log [J[ +[ - 1 )x) 1 ) 2

(-log s) 3.[, -

(s -11)1

-(log s)*(s - 1).(5x -1I + 1)(5Y I +s 1)

HS5 - 1)(sy - 1) 1-(S -)2
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(log s)(s - J)sX+y
(sX+y _ sx - s Y +s)2

S log s.(s - 3). sup (u + l)(v + 1)(OSu,vSs-l) (u.v+ (s - 1))2

1 2 if s < 1 , occurring for(s - 1) u =v =0 or

= log s(s - 1). U=V-S - 1
sif S ? 1 , occurring for

(s - )2 v = s
U = - 1, V 0

-log smax(sl)

by simple inspection.
Note also, for example,

as(X,Y) Dh ()Y
dyDh ( ('y) _______

m s(&,Ssy)) +s+
xS -1

noting for all s z 0 , s - 0 ; x'y e O0,1

Thus, in turn, for all s z 0

2& (x,y) s y
C2 = (s-sx )s log s
a2y [sy +sxs -1]2

for all x,y e [0,1]
Hence, for all x,y e [0,1]

s(s-1) , if I < s

a 2 
x ( s - I

Cy s- 1 , if 0 < s <

x if s = 1

Similarly,

C72P&,s(X Y) S log s (sx

2 y4 .( -)

Note, finally, the evaluation
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log s k 1

2is -- 1 ,0 < s < + , s 1[ 2 &,s(X 1 .. xk)1f[o k-, .

dx 
S = I

1 Xk = 0 ,if s=+
for k > 2

For Yager's Family

d 1 1 , all x,y e (0,1 ,

I I + [1 x)P)(P-l)/p
2[

0 2 (P &,(P)(xY) - p - ((1 - x)/(1 - y))p+1

92y I X + ((1 - x)/(1 - y))p]2-(l/p)

all x,y E (0,1]

For 1 < p < 2 , is the product of P and aa 2y I x

nondecreasing function in 1 - y with limit as y - I being +-
1I y

a 2 &,(p) x,y)
2 -= 0 for p - 1

o2

, 2 p - 1 (p + 1) + (I / p ) (p -

C 2y (-x 2p - 1 )2(1/p)

for 25 pS < +

Also, for all n 2 1 , p Z 1 , all x,... ,x e [0,1] , the

probability density function, when non-zero is

0 29& (p) (x1-". "Xn)

yx I • ... axn

S)P-.(l-xn)P-1

((lx1)p+...+(l-x n)P)n-(I/p)

1 (p-i)-(2p-1). (n-1).p - 1) n - (n- ( /p))

Bellman-Giertz [141 and related theorems

(I) Bellman-Giertz theorem extended:
Given any general fuzzy set system 9 , 9 is mutually dis-

tributive iff I is idempotent iff 5 = 0 (See [14].)
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(ii) From Goodman [91), we have:
Given any general fuzzy set system 5 , 9 is exchangable

with, for all xy e [0,12

[ da&(XY) existing,

dy y=O

iff

(iii) Given any general fuzzy set system g * is semidistri-
butive iff, for all finite index sets , and all x. e [0,1]
j ' Jo 0

r (x. (-,) card k+1. (x#or xj) = 3 j-)"eKxj

Jo

and

c()card k+l. (xj)

jeJ0  O*KJ0 jeK

noting the similarity of the above relations with the alternating
(Poincare) sum expansions of probabilities of unions of events in
terms of intersections and vice-versa.

Basic canonical erpansion theorems

Ling 1159) and others (see [2262, (140]) have obtained the tol-
lowing:

Given any general fuzzy set system I

(a) 7 is Archimedean iff there are monotone decreasing continuous
functions

h,h' : [0,1) [0,+-)

with h(l) = h'(1) = 0 h(l), h'(1) s , called generators, such
that for all x1 ,x 2 . ... xn e [0,1), n ? ,

-I n

&.n) = h (min( Z h(xj), h(O)))J=1
n

or Cx.. .  xn) = 1 - h' -l(min( Z hl(l-x) h'(O)))J=I

h,h' are unique up to positive multiplicative constants.
Conversely, any choice of such h,h, as above generate an

Archimedean system IF
I is strict iff h(O) = h'(O) = + , and this the min operator

above may be omitted. Also, iff 5 is DeMorgan (for no = 1-(.))

h h'
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(b) qnot is Involutive. continuous, and

(Pnot(X) - (Pnot (Y) E y -x ; I ;- y 2 x : 0

iff not 1 1 - (.)

(C) For any involutive Pnot there is a monotone increasing

continuous function V : [0,1 + 
, with V(0) = 0 such that for

all x e [0,1] ,

(not(X) = V-(v( ) - V(x))

(d) Moynihan's theorem [2261.

Given any DeMorgan fuzzy set system for

Pnot = I - (-) ,

'(x'y) - Pa(x,z) 1
e C2 iff 0 S (x'y) - o (xz) <5 Z - y ; for allor(Xy or(XZ

x,y,z e [0,I] with y S z

(e) Given any general fuzzy set system 1 ; E C 2 n Ar

iff the monotone generator h is convex. The n th iteration 9 n

is an n-copula system iff h is convex and h- I  is a completely
monotone function up to degree n , i.e.,

(-i).'-djh- (x)/dix 0 , for j = 0,1,2,.... n ; all x

(f) Frank's theorem (Frank, [611)

(r (rnAr) u 1 u O(IrnAr)

9r n Ar = { s 1 0 < s S + ) 9 T (for Pnot -

= (1 - (.) , , ors )
5 '&,S' or

and for all x,, .. .,xn E [0,l) ; 0 < s S+ ,

n xn
(Xl. .x) = log(l + Z (s _ l)/(s - )n - I )/log s

j=l
n

h ( Z hx(
J=1

Por,s(xI ... . n) = 1 - &,s(I - Xn)
-ln

-In= - hs  Z h (-x)) , etc.,
J=l
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Utere generator hs is given by

hs (x) = -log((xx - 1)/(s - 1))

and where the cases s = 0 , 1, +- are derived by limit consid-
erations (g0 1' I +W already having been introduced) . In

particular, although h0  does not exist as an ordinary function,

for all x e [0,1]

hl (x) = -log(x)

h+ (x) = 1 - x

(See Frank (61], Goodman [91].) Also,

S a C ; for all n a 2n
I = (o' U ( 1)

9 Ir 9 C2
; ' 1 ( 0 S 1 ) 6 C n g C 2

for all n ; 2 ,

5 - -E C 2  Cn for n 2 3,
j (+<} g. C nn A r,

10 2

For all n a 2,

Cn = 0 U (c nA Ar) U OCC nfAr)

Let I = (#not' &' or) be any fuzzy set system. Then

f1 (x,y) S a(x,y) S min(x,y)
max(x,y) -5 or (Y,y) _< f 2(x,y) ,

for all 0 5 x,y S 1 where f and f2 is a non-continuous t-norm
and t-conorm, respectively, which are in a DeMorgan relationship for

not - 1 - (.) , with

x iff y = 1
f 1(x,y ) d y iff x = 1

0 iff 0 5 x,y < 1

x iff y = 0
f2 (xy) d y iff x = 0

0 iff 0 5 x,y < 1
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Note that for any (p) , I , I S p S , the generator h()
for O&,(p) and or,(p) may be written

hp(X) = (I - x) p ; all x [0,4]

Extend now Yager's family 9 to include all 5 for
0 < P < 1 , with generator h) given above. Then for any such
7 (P) , we can compare 4&,(p) and Oor,(p) with the previous
bounds for copulas (2): Since for any

I a x,y > 0 ; 0 < p < 1

(xp + yP)li/p > x + y

it follows that

&,(p) (x,y) S maxsum(x,y) ; all x,y e [0,1]

with strict inequality holding for all x,y e [0,I] such that

(1 - x)p + 1 - y)P < . (A)

Similarly, by taking the DeMorgan transform,

O or,(p)(x,y) 2 bndsum(x,y) ; all x,y e [0,1]

for 0 < p < I , with strict inequality holding for all x,y as
above in eq. (A).

Moreover, it easily follows that

lim &()(x,y) = fl(x,y)p-.0

and

l lm (Por(p)(X,y) = f2(x,y) ,
p-.O

for all x,y E [0,1] , so that these bound relations cannot in gen-eral be improved, noting (5 (p) I 0 < p < 1) 9 Ar , but certainly
(Y(p) I 0 < p < 1) n c2 

= 0
Min and max can be considered as limiting cases of Archi-

medean t-norms and t-conorms:
Consider Yager's DeMorgan Archimedean families of t-norms and

t-conorms

I n-lf. . x h (min( h (x ) I )(P&,p(X ... n ) = p J=l p
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(Por,p(XI ... Xn) = 1 - xI ..... l-xn)-i n

= 1 - hp (min( X h_(x ), 1))

x ,...,x n  E [0,1] ;

h(p)(x) = (I - x)p , for 0 S x : 1 p > 0

Then it can be shown although min, max are non-
Archimedean and not in the family,

[min(x Il ..... xn)24&,I(p) (X1, .... ,xn) min(xi, .... xn) - (n/P - 1)

Imax(x I  -... X ) +(n
I/p -  1) ?- or,(p) (XlI .... Ixn )  max(x, ..... xn )  ,

uniformly, for all x ..... xn c [0,1 .

On the other hand, Frank's family s ' or,s as s -# 0

approaches min, max, respectively, non-uniformly.
For example,

x&,s(X,y) = min(x,y) + log(1 + six-yI - max(xy) - s(1 - min(x 'y)))

-log(I-s)
log s'

noting the critical s[x - Y I term, e.g.

Similarly, recalling that maxsum is not a copula (but is a
t-norm) for n k 3 and bndsum is not a co-copula (but is a t-conorm)
for n a 3 , and for all +w k p > 1 , &,(p) is a copula , =

maxsum , and or,(p) is a co-copula or,1 = bndsum:

p-1

(1 - max(xI .... x n)) p  maxsum(xI .... xn)

P-i

+ 1 max(x ..... n)) p

,,p(x 1 .... Xn) k maxsum(x,, ..... xn )

bndsum(xI .... xn )  Z or,(p) (xl ..... xn )

p-1

(1 - max(x I ... xn)) p "bndsum(x......xn)

uniformly for all x1, ... Ixn E (0,1]

Thus maxsum and bndsum are uniform limiting cases of &,p and

+
Por,p ' respectively, as p - 1
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For further investigations into the definitions and relations
for various fuzzy set operations see Dubois and Prade [51]. See
also: [55), [160], [199), [200) for further discussions on nega-
tion; [65], [10], [112], [115] for implication operator modeling;
and [275) and [50] for interesting general discussions of how fuzzy
set operators should be defined. In addition, again see [4), £911,
£140), [226] for background and other references. See also the
recent comprehensive paper [44'].

Appendix. Pseudo-Inverses of Distribution Functions and Bounds on
Probabilities of Events.

Let F be continuous from the right and non-decreasing over
R For any x e R , define

x = inf(t I t e R and F(t) = F(x))

= inf F- (F(x)) : x

Similarly define for all y e [0,1]

y : PF(Y) = inf{z I y : z e rng(F))

By the right continuity of F it follows that for all x e R
and y e [0,1]

X =X

F(X) = F(x

PF(PF(Y)) = pF(y)

Define for all y e [0,1]

F (y) inf F-(pF(y))

- inf F 1 (pF(y ) ,  )
-i

- inf(F [y,1) ,

- F (pF(y))

In particular, when y e rng (F)

y = PF(y) = F(x) F(x ) , for some x e R

and

F (y) = F$(pF (y)) = F (F(x)) = x*

I
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Thus, for all x G R ,

F z(F(x)) = Ft(F(x*))

Hence for all y e [0,1] ,since p F 6y rng(F) ,there is a

unique x e R such that

F(x (Y)

and hence

F(F (y) =FF pF()= F(F*F(x*)) = F(x = ~F (y)

Furthermore, for all x e R ,y e [0,1])

F(F$(F(x))) = FFtF(X*) F(x*) = F(x)

F t(F(F2(y))) = F*(FF~pF (y)) = F( F (y) FS(y)

Thus, F tIs an actual pseudo-inverse operator.
Also, the above implies, for all x e R ,y e [0,1]

PF(F(x)) = p F(F(x*)) = FF F(x*) = F(x*) F(x)

Lemma 1

For any x G IR , y e (0,1)

F $(y) I x iff y S F(x) iff x e F_ [Y,11

[F3(y), F_~ 1 F y" [y1

Proof: (I) If F$(y) :9 x , then

Y S P F(y) =F(F*(yfl S F(x)

(ii) If y S F(x) ,then

F (y) :5 F$F(x) = x* S x

Application 1:

Let U be distributed uniformly on (0,1) and r.v. X have
t

c.d.f. F over IR .Then F 0 (U) and X are identically distri-
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buted.

Lemma 2

For any x e IR ,y e [0,1)

x F I(y) F (PF(y))

iff

F(X) F(x) :5PFY

Proof: Use FF (P~) - Y and F F(x*) =x*

Application 2

Let X be any r.v. having c.d.f. F over R .Then for all
X e R ,y e (0,1]

(i) Up to zero probability,

X S x iff X I x

iff X S F (F(X))
iff F(X) S ,F~)

iff F(K) S F(x1II(ii) F(X) S y iff F(X) s pFY

Iff X I F S(y)

iff X S Ft ()

(iii) Pr(F(X) S y) = Pr(X S F*(y))

= F(F t(y))

Hence, the c.d.f. of F(X) is p F

Application 3

Let F be any c. d. f. over 'Rn with marginal c.d.f'Is F.
corresponding to r.v. X J, j =1,...,n .Then for all

n
F~x~ ... Ix Pr( a (X. s x4)

J=1l
n

=Pr( & (X~ S F3 (F(x~))
J=1
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= F(F 1 (FI(xI) . F (F(x)))
= G(F 1(xl1),..... Fn (xn)) I,1

G( 1 ..... 'Yn
) = F(FI(y1).... n n)) ; all yj e [0,1)

G~ l,.,Y (y )-'' n J
Clearly G is the joint distribution of n unif [0,1] r.v.'s

U1 .. . Also marginally, the above results imply each
1n'

x = F * (U ) has c.d.f. F , - 1,. ..,n

Suppose dually that F is a continuous from the left nonde-
creasing function over R For any x e R , define

P(x) 4 sup {t I t e R & F(t) S x)

Lemma 3

For any x e R , y e [0,1]

P(y) a x iff y a F(x)

Proof: (i) If P(y) 2 x , then immediately

y 2: F ( (y) ) : F (x)

(ii) If y ; F(x) , then using the definition of,
(y) z P(F(X)) a x

Lemma 4 (Bounds on the Joint Probability of Events)

Let (X,M,Pr) be a probability space. Then, for any
n Z 1 and A 1 ... ,A E % ,

(i) maxsum(Pr(AI),... ,Pr(An)) S Pr(Al. -nAn)

S min(Pr(AI),...,Pr(An)) I

max(Pr(A 1),...,Pr(An)) 5 Pr(AI U.UAn)

& bndsum(Pr(A1 ),...,Pr(An))

where

maxsum(aI ... a) - max(a +--+a - (n - 1), 0)
d

bndsum(a 1 ... an ) min(a1 +-+a n , I)
(ii) Pr(A 1 . .nfAn) = min(Pr(AI),...,Pr(An))

iff for any i, 1 5 1 5 n such that

Pr(A1 ) = min(Pr(A 1 ),...,Pr(A n )

Pr(A1 r S n nAJ) = 1

jiSJ*n
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i.e., there is a minimal set by set-inclusion.
In particular, if A 1 . An , (ii) is clearly

satisfied.

.L Pr(AIu.UAn) = max(Pr(AI ).... Pr(An))

iff for any i , 1 S i S n such that
Pr(Ai) = max(Pr(AI )....Pr(An))

Pr(A. 2 U Aisj

Ji
i.e., there is a maximal set by set-inclusion.

In particular, if A1 . = A , (iii) is clearly

satisfied.
(iv) Pr(A IA ''nA n maxsum(Pr(AI),....Pr(A n))

iff either
Pr(Al n..An) = 0 or Pr(A i U Aj = X) = 1

for all i,j : 1 5 i,j s n ; i j ,
i.e., all AV ... A n are pairwise exhaustive.

In particular, if A1, A 2, .... An are all pairwise

disjoint, (iv) is clearly satisfied.

(v) Pr(AIU..UA) bndsum(Pr(AI),...,Pr(An))

iff either
Pr(AIU..UAn) = 1 , i.e.,
Pr(AIU..-UA n  X) = 1 or Pr(Ai n A. = 0) = I

for all i,j ; I S i,j S n , i * j , i.e., all A1 ... ,A n are

pairwise disjoint.
In particular, if AIA 2 ..... n are all pairwise disjoint

(v) is satisfied.

Proof of Lemma:

Results (iiI) and (v) follow by use of DeMorgan transforms upon
arbitrary A1 ..... An .

For n = 2 , simply use the modular expansion

Pr(AUB) = Pr(A) + Pr(B) - Pr(AnB).

For n : 3 , use induction. For example, for (iv) for
n = 3 , if Pr(A 1 n A 2 n A3 ) > 0 , consider

Pr(A1  A2 n A3 ) = max(Pr(A1 ) + Pr(A 2 ) + Pr(A 3 ) -2, 0)

iff, by using the case for n = 2

I
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Pr(A In (A2nA3)) = Pr(A1 ) + Pr(A2lk3) - 1

Pr(AnA,) = Pr(A2 ) + Pr(A,) - 1

iff

Pr(A 1 U (A2nA3) = X) = 1

Pr(A 2UA 3  X) = 1

iff

Pr((A 1 UA 2) n (AIUA 3) = X) = 1

Pr(A 2UA = X) = 1

iff Pr(AiUA j = X) = 1 , i * j , i,j = 1, 2, 3

See also the very general bounds for the probability measure of
any wff in PL developed by Hailperin ([102'], pp. 206-208),
extending his and Frechet's earlier work on probability bounds. See
also section 2.3.9 (A).

2.3.7 Functional extensions and eubeddings

Extension or lifting procedures are done to enlargen the domain
of point functions to set functions, and further, to generalize set-
functions. Embedding here is restricted to the identification of
points with certain dispersions or equivalently generalized sets:
namely dirac-like forms. Generalizations of extension procedures
and embeddings have been particularly developed by Manes (169]. The
connections between the fuzzy theories of Manes and general logical
systems will be established in Chapter 7.

Here we present essentially two natural approaches to function
extensions and discuss briefly some connections between the two.

Let X and Y be arbitrary non-vacuous sets and f : X - Y a
fixed function. Consider then the following extension and inverse
operations:

f-1 : 9(Y) -4 9(X)

where for any C E I(Y) ,

f-I(C) (x I x e X & f(x) e C) = U f- (y)
y6C

and where similar notation

f- 1 . - X

f ~Y
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is used for (f-1 I ((y) y e Y)) Also,

T : I(X) 91(Y)

where for any B e T(X)

T(B) d {f(x) I x e B)

Similarly, detinitions hold for
- - : 7.A (y ) 79 (X ) ,

T -  : (Y) -. (x),

and

? T (X) - . (Y)

Standard relations which will be useful include:

For any % 9 (X) and C Q 9(Y) if o0 f-(c) , then

C n rng f e

f-1 (C) e s iff (3B)(B e s & B = f- (C))

C C ?(i) 1ff (3B)(B e S & C = f(B))

iff (3B)(B e & B G -1 (C))

iff or (B e n T-1(c))

(Be?_ IC))

1ff (B) 1  
E t n f-1(C))

Beff (C) (BEG _I(C))

Similar results hold at the point level for C replaced by
y e Y , % by B e VP(X) , etc.

Let H0  be a fixed Heyting algebra and recall the category

theory notation SET (See section 2.4.2.)
Let T : Ob(SET) - Ar(SET) be such that

X
Tr(X) Q H0

M (X= 0 is also permissible.

Let U : Ob(SET) - Ob(SET) such that
I(X) S U(X) S 9(X) , where I(X) = class of all finite subsets of
X .

Consider then the following extension relative to T and U
for f :X - Y :

: U(X) U(Y)

Suppose X :(X) T g(U(X)) is given such that for any x e X
defining 8x e X) , a dirac-like form, where

|x
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(y) 1 iff y= x

x0 iff y x,

1 iff x e B

x 0 iff x B,

all B e U(X)

Suppose also first f-1  Y -# U(X) with extension

f- U(Y) -# U(X) Then T :(X) T 9(Y) extends f X - Y For
any g e T(x)

't(g) = 5(g)of - 1 E (Y)

In particular,

t(a =(f(x)) : all x E X

Tn qeneral, although ? extends f , it need not extend T

(This will De clarified a bit later.)

In turn, by considering f-1 : U(Y) - U(X) , then

:(X) - T(U(Y)) is also defined which extends I : T(X) -* T(Y)

Finally, consider f : T(U(X)) T 9(U(Y)) as an extension of ?

or f , where for any g I (U(X)) , f(g) may be definE in two

different natural ways:

(I) Now let % : T(U(X)) -* T(U(X)) with similar
restrictions as before. Then

f(g) d X(g)of-1

(II) Simply let X(g) g and thus

f(g) d gof-1 ,

noting now that for g = x , assuming 8x E T(U(X))

(B) = [ :1, Iff x e B
x 0 ,Iff x d B,

for all x e X

f(8 ) = 8of =€c
x {f(x))

(f(x)} = {C I CE U(Y) & f(x) e C)



Symbolization and Evaluation of Language 129

the filter class in U(Y) on f(x)
As was shown above, the function S plays a key role in de-

termining expansions t or f of f One basic procedure for
determinin the choice of X is as follows:

(I) First consider as an extension of f : X - Y

Let A Q 9(X with @A E T(X) and let y e Y

First, formally treat A as an ordinary subseZ of X
y e Y We have

((PA)(y) = t(A)(y) = 11<y -E (A)>I = Ii<y e ?(A)>i

= U(<or (<xeA> & <xef- (y)>l1
xeX

= II((x,XGX E t Axf- (y))i
xGX

= ((x,x)XGx)

xEX(Axf (y))

t (x A x -1 ((x'X)xEX))xGX f(y)
= t (A (x -

1 -1 {OAMX
(xef- (y)) X4E (y)

since rn i# -1 ) Q {0,)
f(y)

If the logical system (C,x,t) is also truth functionalderived from I = (inot' (a' (Por) (we write also, e.g., Onot or

Ont for lintil ) , then the above evaluation becomes simply

l<y e ?(A)>1 = (or ( X ) )

or A
x~f (y)

noting again the relations,
n (Xl..... Xn) = or (  A (x1 )....A (Xn))

n) ,..x = I nn(j,..n Aj 1#A

X n A (x ,...,x n) = (x ) . .. A (Xn))
CJ=1,...,n) 1 1 fl

for all A E e(X ) , x j X, j = .

Thus, in the case, for all #A E V(X) and B E U(X)

A(B) = or(Pa(X))
xE B
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noting, as a check, the boundary conditions

)(B) 1 iff x e B e U(X)
(x) 0 iff x E B e U(X)

Thus, because 0 bijectively relates T(X) and I(X), may
be considered dually as an extension of f

T:(X) - 5(y)

as developed above, and

? : (X) .- (Y)

(ii) Next, consider f as an extension of f X Y . Again,
treat A E 9(U(X)) formally as an ordinary subset of U(X) with
C e U(X) arbitrary.

Approach (I:

= I<C E f (A)>1

= I<c e(A)>11

= t -I ( A)((B) -
(Bef (C)) B- (C)

Subcase 1: Logical system (C,x,t) is truth functional. Then
it follows immediately that

f(O) (C) = Cor 1  ( A(B))

(Bef- (C))

analogous to the truth functional case for evaluating
The following refers to section 2.3.9 (B):

Subcase 2: Logical system (C,x,t) is Probability Logic (PL),
which although extended from a truth functional system

= (Pnot' c&' t or )  (at the left-ray level) is itself not truth

functional. For PL, denote P = *A ; A (P-1 (M)

(inverse of ) and where for any q 2: 1

Tr(X) = U(X) = 0 , if X * U(-. (U(Rq))..)

U(R q ) = S , T(R q ) = DPL Y, v( q ) = 9,q ; q ? 1

q ql
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Assume p r and CE 9 , with f: q  R
q r

It then follows that

f(P) (C) = t I (p)((B)
BE -'(C) Be - (C)

=(- x (I -))( 1 X
Be (C) B&- (C)

= z -)card % ( x p)( x B,)
0*f- (C) Br= BE%

= x (P)( t B)
Bef (C) B4E-t (C)

noting the complicated form of %(p) here

Approach ITTI:

ff(p)(C) = I<f- (C) e (p)>11 = j(f- (C))

(same as the induced probability measure of-l ).

Returning now to T , relative to PL , where A e 9(Rq) is
rsuch that cA c O q and C = rayr (Y) , for any Y e R

'k( = H ) 1 ( AMx)xef 1(C))xef (C)

card G+lZ - 1 (- 1) ca d G 1( x A )  ((X )x G )
O*G-qf (C) xe G

Z -1 (-l)card G+4
0*Ggf (C) xeG

Furthermore, if & and por are semi-distributive, it

follows that the last expression (formally the same as the Poincar6
alternating sign expansion of the probability of a union of sets)
becomes simply

?((PA )  C) = (Por _ ( YA x ) )

x=f- 1 (C)

the same formally as for a purely truth functional system! However,
in general, even if & and or are modular or Frankian, this

does not at all imply semi-distributivity. (The latter class is
much smaller than the modular class of
copulas.)

Consider now the "extension principle", that is, the general
fuzzy set extension of ordinary functional transforms. Thus, if
f X - Y is an ordinary function and C is an ordinary subset of
XCx

T(C) = (f(x) I x e C} 9 y
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More generally, let A be any fuzzy subset of X and y e Y
arbitrary, then using the previous mechanism in evaluating predi-
cates

(y ) = 11<y G f(A)>1
= (3x)(x E A & y = f(x))11

= 1i(or )(x e A n f- (y)I
xe X

= Por &(gA(x) ' (f 1 () (x))
xeX

= or_ (4PA(x))
xef (y)

Note that 1T(A) has the same form as the transformed proba-

bility function for random variable f(V) , when V has probability
function A for fuzzy set system 5' = (1 - (.), prod, bndsum)

(where bndsum = sum, because of the probability functions present).
The above derivation should also serve as a partial response to

Manes' criticism [170] concerning the "arbitrariness of the fuzzy
set (function) extension principle". (In addition, using random set
representations of fuzzy set theory, another justification for this
definition may also be made. See section 5.2.)

Other fuzzy set operations, including various linguistic quan-
tifiers, are also definable, as illustrated later in section 2.6
through examples of fuzzy set symbolization of natural language
expressions.

We establish now some results needed for considering lifting
operators.

Theorem I (See (1811], pp. 248, 249 for analogous results.)

Let f : Rq _ Rr be Borel measurable such that if C a Rq  is
any closed set, then f(C) e B r Then:r

(1) For all B e B , f(B) e M , up to Lebesgue r-measure 0q r
iff

(2) f possesses property (N) , i.e., for all A a Rq with
Vol q(A) = 0 , volr(f(A)) = 0

Proof:

If (2) holds: Let B e 8 be arbitrary. Then for all n 2 1 , 3 Bq n

g Rq closed such that

B 5. B and vol (B) - < vol (B) S vol (B)n q n q n q
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Define B 9 U B Then B = B U (B - B0) with
n=1 n 

w

Vol q(B) = Vol q(B ) and Vol q(B) = Volq(B4B ) = 0 It readily

follows that

f(B) = f(Bw) U f(B q B0 )

+0

with f(B.) = U f(B n) e 8r and volq(B -1 B) = 0
n=1 n rq B) 0

noting indeed

+0

Volr (f(B)) volr( U f(Bn))
n= 1

If (1) holds: By the proof in Natanson (181'] (originally shown for
f continuous, but not dependent on that property), if f did not

have the (N) property, there exists, A 9 Rq  with vol (A) = 0q
but vol (f(N)) > 0 . Hence, there is a non-measurable set B cr

f(A) . Hence, A n f- (B) 9 A and thus Vol q(Anf-1(B)) = 0 with

f(Af- (B)) = B . Thus (1) is violated.

Example: If f as above is absolutely continuous, then (1) and (2)

p both hold.

Recall for any set X

I(X) g U(X) a 9(X)

Theorem II

Let f : X - Y be such that for A E U(X) and e e U(Y)

f- (f-(B) I B E } A

and

T(A) ( {f(A) I A E A } =

Then

Theorem III

Let f : X - Y , inducing f : I(X) - 9(Y) , and let

I
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A e U(X) Then

(1) f-l(f(A)) r A , i.e., f (f(A)) e A , for all A e A

iff for all C e (Y) ,

(2) C n rng(f) e ?(A) iff f-l(C) E A

(Proof:

If (1) holds:

If C n rng(f) G 7(A) , then C n rng(f)) = f(A) , for

some A G A Thus, f- (C) = f- (C n rng(f)) G A by (1)

If f- (C) A , then f(f- (C)) = f(f- (C) n rng(f)) C n

ring(f) Hence C n rng(f) e 7(A)

If (2) holds:
Let A 6 A be arbitrary and C = f(A) Since clearly

C n rng(f) = f(A) e ?(A) , it follows by (2) that f- (f(A)) Q A

Remark.

For any A G A , f- (f(A)) = U B = U B = largest
BE 1 (f(A)) Be lX)IT(B) = A]

set B in 9(X) with T(B) = A

Corollary 1

Let f : _. be Borel-measurable (i.e., f-1 (B ) qre q

such that for all B e B , if B is closed, then f(B) C B , or,
q r

if Vol q(B) = 0 , then Vol r(f(B)) = 0 Then

(i) f-1 (7(B )) r B qq q

and

(ii) For all C e ?(Y) , with A as before

C n rng(f) 6 7(A) iff f- (C) e A

In particular, if f is absolutely continuous, then (i) and
(ii) hold.
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Remark 1.

For any C e 9(Y)

C n rng(f) E T(A)

iff (3A)(A e A & f(A) = C n rng(f))

iff (3A)(A E A n f-?(C))

Remark 2.

Note that, always, for any C e 9(Y) , if f- (C) C A , then

C A rng(f) e f(A)

Thus, when considering functional extensions, in general, two
choices can arise: the lifting operator ii can be defined as fol-
lows: for f : X - Y , tt(f) : T(X) -4 T(Y) , where for A e 7(X)
and equivalently PA e T (X) , and y E y , by treating formally A

as an ordinary subset of X

(tt f) (OA) )(Y)

*k(A) (y)

J I<f-I(y) E A>II
= or

11<y e ( >1

The first interpretation - see Corollary 1 - is relatively

simple: it is the same as A(f-I(y)) , a desirable form. However,

this interpretation is only natural when X S 9(XI) and Y S 9(YI)
for some spaces X1 and Y, , and where we interpret for any y e Y
by abuse of notation

f-1 (y) = U f-(z) = Uf-1(y)
zEy

In particular, this holds for X = q, Y =q r

X. = Rq , y = r , with (Ifq, Bq, p) any probability space,

A e sr(Bq), (PA =  e T(B q) 9r q# g : Rq _. Rr, f B q : a rq qq r

and thus,-

ll<f-l(y) e A>I = A(f-l(y)) = Pof-(y),

noting (Rr, Br, Pof-) is the induced probability space under f
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and hence

tt(f) : 9rq - 9rr 

On the other hand, the second interpretation though relatively
complicated - see Remark 1, following Corollary 1 - can always be
used, where here simply

f-I(y) = {x I x G X & f(x) = y)

Thus,

11<y e ?(A)> = I<(3x)(x e A n f (y))>l

= II( or < x E A n f- (y)>)II
Xe x

I ((X) XEX 6 t (Af n (y))IIXE 

StA(ATT A-(y))((x)xex)

= Xex x

xe X

= #tA(A f(y) A ( (X) X  )

x f= t 1#n -(( ) ((Xl( )xeX- (Y )
= f 1 ( ) (#A) ((X)xf- (y))

xEf- (y)

using the fact that f ( is an ordinary set and using the
properties of t

Thus, e.g., for any truth functional system

= (not' 0V' Oor ) , f : X - , and any A e 9(X) , y e Y,

(Y) ?(A) (Y) = or ('A(x))

xEf (y)

Also, note that Corollary I gives sufficient conditions when
the two interpretations for tt coincide.

Again, note that the two approaches are based upon, in general,
two different appearing relations

PRel1(Y,A,f) = ll<(3x)(x e A n f 1 (y)>1

and

.. .... .. ..
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Rel2 (y,A,f) = 1<f- (y) e A>II

for all f : X -a Y , A E T(X) , y E Y
When the sufficient conditions (Corollary 1) hold for f , say,

all f e C(X,Y) , then for all y e y , A e 91(X)

ORel (yAF) = Rel (y,A,f)

Equivalently,

(vy)(VA)(If y e Y and A e T(X) and f e C(X,Y) , then

(Rel1 (y,A) iff Rel2 (y,A)))

Note that for j = 1, 2,

Rel r Y x %(X) x yX

and may be considered equivalently

PRel. : Y x T(X) x yX- (0,1)

or as the function

f Y -# 9(9(X) X yX)

etc.
Thus, if a standardized extension procedure is adapted for all

functions, e.g., then clearly since Rel I = Rel 2 over

Y x 9(X) x C(X,Y)

1t(Rel 1) = tt(Rel 2) :(Y x I(X) x C(X,Y)) -+ T(0,i)

However, in general, even if such a consistent procedure were
adapted, a given relation could be reinterpreted distinctly.

For example, Rel1  could be interpreted as

4Rel1 : X x 9(X) -* {0,I)

where
Rell1(x,A) An ;-l (y)W

- fl ( ) ,

or Rel 2 as

Rel 2 : X (0,1)
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where

wRel 
(A) = A(f-l(y))

2A

etc.
Thus, much care must be exercised in the choice of definitions

and in particular the application to the extension of functions.
(See Manes' related approach to extensions and lifting, section
7.2.)

Extensions of classical logical connectors and semantic
evaluations from classical logic to Ho-valued logic.

1. All statements in natural language must be put into formal lan-
guage in terms of memberships w.r.t. attributes and use of the
operations not, &, or, in perhaps some compound form.

2. Consequently, all propositions of interest in the formal
language may be reduced to strings of the generic form

= (comb(not, &, or))(<x1  A 1 ),...,<xn e A>)

3. Each such string s may be further interpreted as

s = <(xl ....Ox n) e (comb(Cxt))(A1, ... An))

4. The truth extension of any such s is:

1Is" = B()

= ((comb(C,x,t))(@A ..... '- An))(x)

(However, this does not necessarily imply truth functionality.)

5. If the system is truth functional, then step 4 may be carried
further:

1esl = comb(Anot, %&, (or)(x(X1 )... 'An

nt $'$r)(A1 (V

where the operators $not V r 6 "2 extend their

classical counterparts @not 1 ' &' or ' "2 , in some sense,

where

n
n =d{f f : (-,1) n 

- {0,1})

is the class of all n-argument Boolean polynomials (or truth table
functions) for classical 0 - 1 logic and where we could choose,
e.g., H0 = [0,1] , and

0
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go I{f I f : Hn - H0) , n 1,2....
n0 0

is the class of all generalized n-argument Boolean polynomials (or
truth table functions) and where

4A (xi) = i<x E A >11 , j

6. In place of step 5, for the non-truth functional system LSL
(Lebesgue-Stieltjes Logic), llsil must in general remain as in step 4
and be evaluated by relations established between C, x, t

However, for the subsystem PL (Probability Logic), we do have
the relation, where each x. E q

A 9orq , j = I ,...n ,

Ils l = (OA 1x  ...xPA n  ) (c o m b (C ,x ,t ) ) x I  ..... Xn )

(Note that each x. here is a set, not a "point".)

Consider next step 2. It is well known (see, e.g., Enderton
[54]) that in classical 0 - 1 logic, (0not' (&P' or) form a com-

plete Boolean operator system, i.e.,

d g
%9 = U % n = {comb( not, 'Pa' or) I comb is an arbitrary

n=1
combination forming strings).

The question of operator completeness for any [0,1]-valued logic
becomes essentially a moot one. (See [54], pp. 62-66, 313-315.) In
any case, the above property justifies step 2 for formal logical
abstractions of two-valued logic to more general ([0,11-valued, for
example) logics.

However, consider the following alternative evaluations for
Hlsil in steps 4 and 5:

We can extend all at once 9 to

1= (T f e %

by use of either definition for (^) or it , as discussed earlier.
In particular, this means that for a truth functional system, the

0 - 1 logical connectors Pnot 6 %91 1 &' *or' 4.' %, V E 2 all

extend (non-uniquely) to some $not' $a' $or' $ E . In

turn, these extensions may be used in steps 3, 4, 5 for modeling
and evaluating sentences or strings s . (The triple of primitive
operators (not, &, or) could be replaced by (not, &, or, = ) I
etc., in generating sentences through all choices of comb.) Hence,
any s in step 5 is evaluated by this approach as
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(i Is,, = comb($not, $a , o )((PAlI(X 1 ) ' O n.. *A (Xn))

or distinctly by

(ii)

isi = coAb( not' &, or)(xAl(XI ) ..... @An(xn))

which are obviously not the same evaluation as the earlier approach,
the latter being two-valued while the former is single-valued, etc.

For either variation of this approach each f e %9n  of inter-

est, such as f = 0not' 9a' Oor' or f = comb(Onot, 'P&' (or )

etc., extends to some

t _ (T0, I1 : H02n 2HO2

since we can identify, e.g., for H0 = [0,1]

[O11]2n = 9({0,1} n)

and

[0,1) = 9(0,1),

where for any x e [0 ,1 12n, 0 (x)e [0,1] can be considered the

degree of truth of t operating on x , while f 1(X) e [0,1] can

be considered the degree of falsehood of f(x) Manes ([169] and
see also section 7.2) considers this approach to the extension of
operators as well as to the extension of membership and equality
relations. In general, we take the first approach for simplicity,
with the other in mind. The resolution of choice of the most
appropriate extension of classical logic operators to H0 -valued

logic remains a difficult problem. Some progress at the practical
level may be seen in the work of Zimmermann [291] and others [250],
[275]. See also section 8.4 and Chapter 9 for related issues where
asymptotic behavior may be utilized. Frank's or Yager's families
can serve as natural parametrized classes of connectives - see
section 2.3.6 again.

2.3.8 Further semantic evaluations

In sections 2.3.5 and 2.3.6, we have considered some basic
formal language operations, and their direct general set operation
interpretations, as well as, several possible corresponding semantic
evaluations, depending of course on the particular logic chosen.
These included:

nt (negation) - complement - 1 - (.) , etc.

S
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& (conjunction) - intersection or more generally,- t-norms,
etc.

cartesian product.

or (disjunction) - union, or more generally -t-conorms, etc.
cartesian sum

(implication) - if (.) then (.-) - nt(.) or (.)
etc.

- (double implication) - iff - (if(.) then (..)) and
(if(.-) then (.)))

In addition, in section 2.3.7, we treated the important con-
cepts of the formlization of ordinary functions (within a formal
language) and the consequent semantic evaluations as extensions of
these functions.

In this section, we look at some additional formal language
concepts together with their corresponding semantic evaluations.
All of these are related to functional extensions and, more gen-
erally, fuzzifications of classical concepts.

It should be noted that the term "projection" as used in sub-
section (D) should not be confused with the function symbol
proj : Ob(L) x Ob(L) -# Ar(L) and its semantic evaluations. In
addition, only two quantifier function symbols - together with the
axioms and rules in which they appeared in ThsynK and their

semantic evaluations - weLe considered in some depth in sections
2.2.2 and 2.3.2, namely: V and 3 . Even so, the axioms and rules
governing these are compatible with essentially only intuitionistic
logic and in part.Lcular not with general negations, t-norms,
t-conorms, i.e., general fuzzy set systems. Furthermore, other
quantifications - such as Mo and Abt(3/4) were listed as function

symbols in 2.2.2, representing, "most", "about 3/4", respectively,
but no axioms and rules were introduced in ThsynKK governing

their behavior. Consequently, because of the nature of general
quantification, an alternative approach - basically, only through
semantic evaluations and not through any particular theory - is
developed, as given briefly in subsection (F) here, although, of
course, the function symbols for such quantifications do appear in
the formal language. Note also that the extreme quantifiers, 3
and V , can be considered as eliminative definitions in a natural
sense in terms of interated or and & operators, respectively.
However, as before, this approach and the axiomatic one developed in
Thsyn,K in general do not coincide. Nor do these coincide with

the single "percentage" approach (II) used here in subsection (F).

A. Compound operators

"if (.) then (..) " can be defined compoundly:

(.) * (..) as (not(-) or (-.)) , or can be defined directly.

"iff" = usually defined as
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(if(-) then (..)) & if (.-) then (.)) , i.e.,(. ..) & (.. .) .

The concepts of incidence and subset have already been
approached through majorizing membership functions. Another
(different) approach is through the compound formalizations:

A A B ) = or (x e A n B)
XG X

A S B ) & ((x e A) * (x E B))
xQX

This naturally leads to

( A= B ) = ( A B & BC A

But note that this does not in general imply the following semantic
evaluations as lA = *B ' i.e.,

Ux E All lix E B11 ; for all x e X

Indeed, under a truth functional system,

11A = BII = &(c& (4=(4A(X), B(X))

xE X

& ( ,(OB(X) ,  A(X))))

xE X

Other equivalence relations similar to equality of sets have
been discussed in section 2.3.3 on G~delian Logic and in section
2.2.2 (see "x") , as well as in Appendix 3 (iv), section 2.4.2..

B. Intensifiers

For any A e I(X) and non-negative integer n , define A®,

the nth intensification of A as, for all x e X

(x E A ) = & (x e A.),

where

A, =A 2A n= A
A1 A2 n

and define the nth extensification or stretching of A as , for
all x e X ,

(xe A ) = or (x e A.)

where again

A, = A A .nA =A

1 1 n
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Thus, if a truth functional system is present, typical evalu-
ations are

11 x e A~l 0 1=(& (A (x))
j=1 .... n

= TAx.. xA(X .... X)

lix e AID = 0or (OA(xj))
J=1 .... n

= PAt...ntA(x...x n )

If further, & is a strict Archimedean t-norm with a

canonical representation as given in section 2.3.6;

&(u,v) = h-1(h(u) + h(v))

then it readily follows that

lix e AGII = h-1(n.h(oA(x)))

with a dual representive for ix e A191 , when or Is a strict
' @~or sasrt

Archimedean t-conorm. In turn, these relations may be used to
define immediately, arbitrary real-intensifications:

For any non-negative real r

lix e A =1 h-'(r.h(pA(x)))

Note the basic exponential relation, for any
r,s a 0 , x e X, A e 9(X)

ii= IIX® r o,lix c (A(!) 11x e c)( i

11Ix4E A (i
= h- (rsh(o A(x)))

Thus, linguistic hedges such as "more or less", "very",
"extremely", "little", etc., could all be defined through proper
choice of exponent above. (But see also [51] and [167] for other
approaches.)

C. Conditioning (See also section 2.3.9)

Let A e I(XxY) and B e I(X) , noting that trivially
B e I(XxY) where for all x e X , y e Y

S p (Xo y) = a ( i th

Suppose also that (in the membership function ordering sense)
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A Q B,

SUP OA(X'y) & PB(X ; all X Z X
ye Y

Suppose finally that 0,is continuous. Then by the basic
(Darboux) property of continuous functions, if follows that there
e.xists at least one

(AlxeB) Q V(Y) ; all x e X

such that

I(ye(AjxeB)) & (x e B)11 = II(x,y) c- All

i.e., assuming truth functionality,

Pap(AjxB (Y , Yx) = c A (x,y) ;all x e X

We call (AIxeB) the conditional generalized set A given
x e B.*

The above relation is equivalent to

(AixeB) x B = A.

If &is strictly increasing in its arguments, then the above

conditional generalized set is uniquely determined.

D. Prolections and interactions of Qreneralized sets0

Let A e I(XxY) . Then for any given 0 or 'the X-projection

of A is given by, for all x e X

~proj X(A)(x) Oor ( A'Xy
YG Y

11I or((X,y) 4E A)11

- i(3yEy)((x,Y) e A',;.

assuming a truth functional system.
Thus, using the basic property of t-conorms

4trj () X)~ SUP A(X'Y) Z XYXrj~ ye v

for all x e X , y e Y1 implying

*PA(x'y) = Oa((lxpo (A)''(Y) ' proj X(A)(x))

Then,
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(AlxEprojx(A)) = projy(A)

iff

A = proj y(A) x projx(A)

in which case, the two projections of A are said to be non-
interactive, or, in particular, independent, for 4P = prod.

For other approaches to projections and conditioning see Nguyen
[188] and section 3.3. See also section 2.3.9 for related results
for Probability Logic.

E. Bayes' theorem

Let X and Y be any two spaces and assume for each x e X

a set Bx e I(Y) exists. Also, let C e 5'X) be given. Then for

any chosen Por , (AjyeprojY(A)) e 5(X) exists for each y e Y such

that for all x E X ,

PA(xy) 9 06(oBx(y)'c() = O&(P(Ayeprojy(A)) (x)'projyA))

(The proof is immediate from the definition of conditional sets.)
We zan identify without loss of generality (with abuse of

notation)

Bx = (Aix e projx(A)) conditional set

C = proj X(A) prior-X set

projy(A) averaged-Y set

(Aly e projy(A)) posterior-X set

However, in general, equality does not really hold for the
first two relations. Indeed, if for each x e X , there is a
y e Y such that

OS ( ) = 1 ,
x

then

OB(x) -. proj x(A) (X) S (Por(OB(x))

ye Y

and hence for a non-Archimedean t-norm such as sup , equality indeed
does hold.

The use of Bayes' Theorem procedes analogously as in the clas-
sical probability situatioi,, which incidently, is clearly a special
case of the above development when discrete spaces are considered
and = prod, or = bndsum and PB C are ordinary probabil-

xity functions. (See Chapter 9 for applications to combination of
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evidence problems.)

F. Quantification

Generally, quantification may be approached as follows: (See
also Zadeh's extensive work, e.g., [283], [286).)

First assume as usual that a fixed logic and a logical system
are present. Let "quant" be the linguistic form for any percentage
quantifier such as: many, some, all, almost none, few, sometimes,
about 3/4, two-thirds, most, etc. It is assumed that

Qquant : [0,1] - [0,l] . Note, however, some dichotomy for the

extreme quantifications "for all," and "there exists": These, of
course, may also be treated from an interactive conjunction and
disjunction approach, respectively.

Let "pop" be the linguistic label for some fixed ordinary set
representing the base population to be considered. Let
A,B e T(pop) , representing two attributes. We wish to evaluate
semantically the sentence

d
s = quant(A is (are) B)

For example:

"most men are short here", "several tall people have jaundice",
"sometimes fat people have breathing problems", etc.

Approach I - Use of implication operator.

s = quant(Vx e pop)((x e A) * (x e B))

Assuming the logical system is sufficiently truth functional,
the above evaluation becomes

HSU = quant ( a (4=(A(x) , PB(x))))x4Epop

Approach II - Use of conditioning.

Suppose formally that "univ" stands for the ordinary set repre-
senting all possible populations or "worlds" of interest. Also, let
"wt" be a weighting attribute. Then we may also formally consider
A,B e 5(univ) and the wff's

a d(pop e A)
d=(3x e pop)(x e A & x e wt),

b 2 (pop e A n B)
d= (3x C pop)(x E A n B & x e wt)

Note that from the above definitions, it does not follow in
general that truth functionality holds for A n B relative to A
and B , i.e.,

0
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AnB(pop) * Y)&(A(pop) , B(pop))

However, truth functionality may be applied to x e A n Bi.e.,

4AnB(X) = &(OA(x) I BX))

may hold.
Thus, typically,

flall = or (Ya( 4A(X)' Owt (x ) ) )

xE pop

,ibil = 0or ()&(OA(x) ' B x )  , wt(X))) ,
xEpop

and hence, l(bla)ll is evaluated from

lblil = &&(1 (bIa)l , 11all)

In turn,

fl(quant(bla))l = (quant l(bla)ll)

In particular, if Owt(x) 1/card(pop) ,Pa = prod (or min), and

or = bndsum , then

11(bla)fl = ) A(X)(XB(x) / 0 A card(AnB)/card A
xepop xepop

with il(quant(bla))ll then obtainable - the same result as obtainedby Zadeh, e.g., [283], [286] in his "fuzzy cardinality" approach toquantifications.
Again, as in the general case, modeling of quantifiers may becarried out in several different ways.
See section 2.3.9 (B) for more detailed development of condi-tioning, projections, Bayes' Theorem, and quantification as appliedto probability and Lebesgue-Stieltjes logical systems.

G. Transformatons of dispersions, induced measures and
linQulstic variables.

Recall that a dispersion space (X,A,p) consists of a set XI(X) 5 A 5 T(X) , with A possibly having additional structure suchas being a a-algebra, and p : A - [0,1] , also possibly havingadditional structure such as being a probability measure.
Let (X,A,p) be an initial dispersion space (Y,%) a spacesuch that I(Y) 9 % Q(y) , for some set Y , with f : X -4 Ybeing A - measurable, i.e.,

(%) f-)(B) I B e ) {f- (A) I A C A)

where as usual f- 9(Y) - 9(X) , where
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f- (A) = (x I x e X & f(x) e A)

Then f induces a (final) dispersion space (Y,%,u) , where

d -iz'= pof

Example 1. Probability spaces

Here, (X,A,p) is a probability space and hence (Y, ,P) is
also a probability space, the one induced by f , also considered a
random variable.

Example 2. Linguistic variables (See also Zadeh [279].)

m
Let X be a measurement space. Typically, X R , or

X = {.. red, yellow, ..} , etc. Let Y be a space representing a
population, such as all living female humans between 30 and 40
years of age and holding a Ph.D. degree in Economics. Let
g : Y - X representing a measurement mapping such as age, height,

race, weight, etc. Indeed, X may be considered the class of all

measurement mappings. Next, ling : XY  95(X) is the linguistic
variable mapping where, for example

ling(age) = {.. old, young, very old, about 20 years old,
middle age, ... )

ling(ht) = (°. tall, very tall, short, between 60 and 68 inches
tall,. . etc. v

A natural constraint is that

ling(XY ) = U ling(g)

geX
Y

and a basic condition is that for any g e XY and any
C E ling(g) 9 9(X) , there is a r E (Y) such that

<y e re> = <g(y) e C> , all y e Y

and hence taking semantic evaluations

r (y) = II(yerC)I = II(g(y) e C)l = cg(y))

for all y e Y
Thus, for example, for y = John e Y , g age and C = young,
rC = "young" and

young(John) = young (age(John))

young youn
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Now consider again any g X. Then

-l g-1) g-1
g : rng(g) - rng(g , where rng(g) 5 X , rng(g 1 9(Y),

is disjointly bijective (due to the partitioning of Y induced by
-1 -1 -1 -

), noting (g ) = g :(rng(g-)) , (rng(g)) (g being
the set extension of g as previously developed in 2.3.7.)

In this case, we let the initial dispersion space be
(rng(g), A, /J) where

A = J(rng(g))

d
P C '

with C 6 Ing(g) arbitrary fixed, and where for any Q e A

YcQ) 91 6 (Ycx)),

xEQ

for t-norm , fixed.

Then we may take for the transformation here

f 9- 1 P

resulting in induced dispersion space (rng(g-), s, u) , where

= 1(rng(g))
d

-1
where for any a e 7(rng(g ))

S & ( (Q))

QErQ

= @ ( c(g (y !))
yEQEQ

2.3.9 Examples of seml-truth functional logical systems

In this section, the formal language z is for Probability
Logic. (See Maydole [1722 , p. 145; Hailperin [102']; Rescher
[214], pp. 184-188; also section 2.3.3.) We will first proceed to
specify the concept of dispersion and show that the probability
logical system is semi-truth functional (i.e., up to the rays-level)
but not truth-functional. Next, we will extend the probability
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logical system to the Lebesgue-Stieltjes logical system.

A. Probability log.al system.

I. As in 2.3.5, let Y = R , and X = 81 , the Borel c-algebra

of R , so that T(X) = T(R) = the class of all probability measures

over (R,B1) . If Pr e T(R:) , we write Apr = 0-1(Pr) E 5(R) for

the generalized set on B 1  with Ar = Pr . Pick 4 any

--copula, e.g., min, prod. Let Oor be the DeMorgan transform of

First, construct by Sklar's theorem (see 2.3.6 or [238]) all
joint probability distribution functions F for any given

Pr1 ,...,Prn e T(R) using cpa

d

F 1,...,n 1 an ) = &(F1(a 1 ) ... ,F n(an))

for all a e R where F is the distribution function correspond-

ing to Prj , j = 1,...,n Thus, for
Ia i (- , a n) 8 1

Pr1 ....n (Ia X.×an ) = &(Pr,(Ia ),....Prn(Ia )

(truth functionally over rays).
In turn this uniquely determines

(1Rn ,  8n ,  Pr1  . .n

Note here x is defined (through 4P) by

Pr ... xPr El Pr
1 n

We extend x to include forms such as (1 - Pr1 ) x Pr2
(I - PrI) x (1 - Pr 2) , Pr I x (1 - Pr 2 ) , for two arguments and

similarly for three or more agruments, by formal expansion, where
1 (A) = 1 for all A e a, , etc.
X

For example,

(1 - Pr1 ) x Pr 2  I x Pr2 - Pr1 x Pr2

where it should be noted for any A,B e 81 1

((1-Pr1 ) x Pr 2 )(AxB) = (lxPr 2 )(AxB) - (Pr1xPr 2 )(AxB)

= Pr 2 (B) - Pr 1 2 (AxB)

0
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= Pr 2(CAxB)

and for all A,B e B1 :

((1-Pr 1 ) x (I-Pr 2 ))(AxB) (1x1-Pr xi-lxPr 2+Pr xPr2)(A×B)

= 1 - Pr 1 (A) - Pr 2 (B) + Pr 12 (AxB)

= Pr1 2 (CAxCB)

It can be verified that here x is a legitimate cartesian product.
Note

C <G e APrI> = <G e CAPr1>
= <G e AlPr >
1 1
= <CG e A pr >

Note for any A,B e B1 I

A t B = C(CA x CB)

= (A x R) U (R x B)

A x B = (A x R) n (R x B)

Pr1 2 (A t B) PrI(A) + Pr 2 (B) - Pr 1 2 (A x B)

(modular form) = (Pr1 x 1)(A x B) + (1 x Pr2 )(A x B)-Pr 1 2 (A x B)

(DeMorgan form) (1 - (1 - Pr1 ) x (1 - Pr 2 ))(A x B)

Define for any

a = Pr I or 1 - Pr I

p =Pr2 or 1 - Pr2 ,

a t / = (a x 1) + (1 x /) - a x /

Thus,

(PrI t Pr2 )(A x B)

= Pr 1 2 (A t B) , etc.

So t is a legitimate cartesian sum.
Thus, x and t form a DeMorgan and modular system here.

Pr I t Pr 2 = (Pr1 x 1) + (I x Pr2 Pr I x Pr 2

noting Pr1 x Pr 2 = Pr1 2

In particular, if Oa = min and Pr1  Pr2

(Pr I t Pr1 )(A x B) = Pr 1 2 (A t B)

= PrI(A) t Pr 2 (B) - Pr 1 2 (A x B)
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Pr 1 2 (A x B) = Pr I(A n1 B),

(Pr1I t Pr 1 )(A x B) = Pr 1 2 (A t B) = Pr1I(A U B)

Use the notation

comb(C, x, t)(Pr 1 ,Pr 2 ... ,PPrn)

to Indicate some combination of prob. measures, as for example:

(1 - Pr1I) x (Pr 2 + (1 - Pr 3 )) x Pr 4

Theorem

For any probability spaces (X l Aj Pr) j = 1,....,n ,and

any A. E e A IJ =1,.n

comb(C, x, )Pl..Pn)(l..'A)

= Pr Ix ...xPr n(comb(C, x, t)(A 1,. ..,A n))

(Note that Pr1x ... xPrn = Pr

Thus, e.g.,

((l - Pr 1 ) x (Pr 2 t (1 - Pr 3 )) x Pr 4 ) (A, B, C, D)

=Pr 1 ,2 ,3 ,4 (CA x (B t CC) x D)

Examples:

(Pr1I x Pr 2 HA x B) = Pr 1 2 (A x B)

(CPr~ 1 Pr 2 )(A x B) = (1 - Pr 1 x Pr 2 )(A x B)

= (1 x Pr 2 )(A x B) - Pr 1 x Pr 2 (A x B)

= Pr 2 (B) - Pr1 2 (A x B)

= Pr 1 2 (CA x B);

(CPr 1 x CPr 2 )(A x B) = ((1 - Pr 1 ) x (1 - Pr 2 ))(A x B)

= 1 - Pr (B! - Pr (A) + Pr1 2 (A x B)

= Pr 1 2 (CA x CB);

(Pr 1 t Pr 2)(A x B) = Pr1I(A) + Pr 2 (B) - Pr 1 2 (A x B)

-1- ((l - Pr1) x (1 - Pr 2 ))(A x B)

-Pr 1 2 (A t B)

(CPr 1 t Pr 2 )(A x B) =Pr 12 (CA + B)
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((CPr 1 t Pr 2 ) x (Pr3 t Pr 4 ))(A x B x C x D)

= ((CPr 1 + Pr 2 - CPr1 x Pr 2 )x(Pr3 + Pr4 - Pr 3 x Pr 4 ))(A x B x C x D)

= (CPr1 x Pr3 + CPr1 x Pr4 - CPr1 x Pr3 x Pr4

+ Pr 2 x Pr 3 + Pr 2 x Pr 4 - Pr2 x Pr3 x Pr 4 - CPr 1 x Pr2 x Pr3
CPr1 x Pr 2 x Pr 4 + CPr 1 x Pr 2 x Pr3 x Pr4 )(A x B x C x D)

= Pr1 3 (CA x C) + Pr1 4 (CA x D) - Pr 13 4 (CA x C x D)

+ Pr 2 3 (B x C) + Pr2 4 (B x D) - Pr 2 3 4 (B x C x D)

- Pr1 2 3 (CA x B x C) - Pr1 2 4 (CA x B x D)

+ Pr1 2 3 4 (CA x B x C x D)

- Pr 1 2 3 4 ((CA t B) x (C t D))

II. By the bijection between probability measures and c.d.f.s

over q q 2 1 , we consider

T(R q ) - (A I A Q 9(X) & A = F where F is a c.d.f. over Rq }

Pick not, &, or to have their ordinary meanings, so that not
is involutive, & , or are symmetric, associative distributive, etc.

Let P& be an r-copula (not necessarily associative nor

symmetric). Then by Sklar's Theorem (2.3.6), for any A E 5(R)

(here FA =F c.d.f.) , xG R ,J = 1,...,r,
(O j j

xAx . xAr (xl,.... xr) = F1x . XF n (x1 ..*xr)

= a& ( O A 1 ( x 1 ) -. ....9 A ( x r ) )

0& a(F 1(x I) ,..... Fr (xr ) )

I<(X I  .... x n ) e A1 x... xAr >1

ris a legitimate c.d.f. - as a function of x = (xI .... x) E R

Conversely, (by Sklar's Theorem ), any c.d.f. F over Rr  may be

written as, for any x = (x1 ..., Xn) . Rn

F(x I .... xr) = &(F (X1 ),..... Fr(xr)) I

where = F(Fi*,...,Fr*) Is an r-copula and

F , ..... +) is the jth marginal c.d.f. of F
J = 1.....r

Define or to be the modular complement of (Pa, i.e., for
' a 11 [0,13
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jES 0Ul..l )(1)cr ~ &(

Thus, for all u1 ,u 2 ' u3 e (0,1]

(Por (u I) = U 1

'or (u 1,u2) = U 1 + u 2 - u,2

(Por (uu 2 ' u3)= ~U I + u3 - 4',lul'u 2) - ,(ui,ua

- 'P,(u2 ,u3) + *(Pu,,u 2iu 3) , etc.

Define negation operator as simply

(Pnot (u) =1 - u ; all u e (0,1]

We can interpret, for any X e R ,A E Cz9(R.) = F.i

c.d.f., corresponding to r.v. V j: Q2 -* R where (2,%,Pr) is a

fixed probability space and left ray R~ = -, ],~ i =1,.r

<x. 6 A. <V e R x> ,j = 1,...,r and jointly,

<(Xox24 A 1 x A,> =<(V 1 V 2) R 4 xR 2>

=<xI A 1 > a X2 2 1 2 1 <X > = <V 1ER x> & <V 2e R x>

<Xl2'x3)eA 1 t A2 tA3 >

=<x1 I4 A 1> or <x2 e A 2> or <x 3 e A 3 >

=<V 1 e R x> or <V 2 e R x> or <V 3 e R x > ,etc., where some

of the xj'5 or Ails may be the same.

Thus, a typical string may be written as

s =comb(not, &, or)(<x1 4 Aj>...,<x m E Aji>)

where A 1.'A~ 4m (Al ... and hence

s =comb(not, &,or)(<V~ ie R x >,.,. .,<V 4m R xm>)

= C(va ...,V~ ) e comb(C,x,t)(R ,...,R )>
1 1 m x 1  x

by the usual relations between ordinary complement C ,cartesian
product x ,cartesian sum t , and ordinary not, &, or, so that

s =<(x 1 ,...,x m) e comb(C~x~t)(A~ il..Ai

so that
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I1S11 = @comb(C,x,t)(A ... ,A )A(X I .... I xm)
1

comb ((Pnot' &' (Por) (cAil (XI) ..... i (A. (m)) I

in general, and hence non-truth functional, although IIsll does
depend on comb(Onot' &, Oor)

Example 1.

Let r = 2 , and consider B as the shaded region:

(x1,Y2 ) (x2,y2 )

(x1 ,Y1 ) (x2 ,y1 )

Let here m = 4 , with

A= A, = F

A 2 J F 2 , etc.

s = <x E A > & (not <x2 e A1 >)

& e A 2 > & (not <Y2 6 A 2 >)

= <(X1 ,x2,Y1 1Y2) e ((A1 x CA2 ) x (A2 x CA2 ))

= <(V 1,V1 ,V2 ,V2 ) e (R x CR ) x (R x CRy2

= <(V1 ,V2 ) e (Rx 14 RR2) x (Ry1 - R y2)>

<(V 1 ,V 2 ) *R x I R (R x 2 R - (R I R U (R x RRyl (x 2 × Ry1  (x× y2  (x 2× y2

<V1 e Rx 4 Rx2> & <V2 E R - Ry2 >

with truth evaluation

fIsIl = F 1  x F 2((R -4 R ) x (R -4 R ))2 X1  RX2  y1  y2

= (F1 x F2 )(x1ly) - (F1 x F2)(x2,Yl) )

- (FI x F2 )(x1 ,Y 2 ) + (FI x F 2 )(x 2,y 2 )

Example 2.

s = (<x1 e AI> & not <x 2 E AI>)
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or (<yl e A2> & not <Y2 e A2>)

= <(X1 ,x 2,y1 ,y 2 ) e ((A 1 x CA2 ) t (A2 x CA2 ))>

= <(V 1 ,V2) e (Rx -4 Rx2) t (Ry - R y2)>

so that

Ilsl = (F1  x F2 )((Rx 1 R- x ) (R - Ry2))

= (F1  t F 2 )((R l -4 Rx2) x (R y I y 2 ))

In turn, by using standard extension procedures of measure, the
above results may be extended from propositions <x e A> to
<B G A> , where <x 4 A> = <Rx e A> and pF =(A is the probability

measure corresponding to c.d.f. F and B a q , the Borel field orq

a-algebra over Rq . Marginals, conditionals, independence all hold
as usual. Thus we identify

comb(Cx,t)(pF '"'SF )(R ***.R x

= comb(C,x,t)(Fi,...,Fm)(X 1,....x m).

Hailperin (1021] has recently contributed a most important
paper conc3rning Probability Logic (PL).

Firsc, a brief history is given for the problem of determining
if probability theory can be viewed as a multiple-valued logic.
Included is the Reichenbach-Tarski controversy, where Reichenbach
considered, formally, probability analyzable as a truth functional
multiple-valued logic, when conditional probabilities are also
treated as (hidden) variables along with marginal probabilities;
Tarski taking a critical view of this.

Hailperin's approach, avoiding the problems of quantification,
etc,. is restricted to developing a semi-truth functional PL .

More specifically, Hailperin utilizes the normal disjunctive
form available for any propositional wff 7 in a formal language L
where, say, FV(?) = (xi ...X) , for some (free) variables

x ..... xn Iand some n = n(r) 2 1

= comb(not, &, or) (xi, ... xn)

= comb(not, or) (& B I B S {x,. *.Xn))

where for any B = (x. ,...,x. i , say,

& B x. &...&x
m

Then, generalizing the ordinary concept of a model (see section
2.3.3), in effect, a probability model PM for a collection of pro-

positions ( '1.... r ) with

0
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0 FV(TjAd =J

is any probability function PM over {& B I B 9 A0 )

In turn, if 7 is any wff with FV(?) S Ao , then

P M() d Z PM (&B)
(BIBA 0is such that &B . T)

0

where B IP is the usual material implication in 0 - 1 logic
(see section 2.3.3 (a))

A word of caution in the use of Hailperin's scheme: One must
distinguish carefully between the primitive (author's term) con-
junctions and similar appearing but different compound ones. For
example, suppose that A° = (xl,x2 Then the four possible

primitive conjunctions are,

,XI &X 2 , &xx 2 = & x

keeping (on purpose) the & notation on unary forms, where the
corresponding probabilities satisfy

PM(0) + PM(Xl) + PM(X2) + PM(Xl & x2 ) = 1

But note that for x. considered as a compound expression,

xj =&x or (x1 & x 2 )

ax. , j 1,2 ,

and since for ordinary 0 - 1 logic

Xj ) x. and (x & x 2) x. , j 1,2

but it is not true that

0 x nor x i  x i j,

it follows that

PM(Xj) PM(&xj) + PM(Xl & x2) , j 1,2

and hence

PM(Xl & x2) mn PM(xl,X 2 )

as should be, etc.
(Note the analogue of this situation with that in Chapter 9

(B).)
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It follows that PM obeys all the usual laws for a probability

logic operator including, for all 0,7 E Wff(L) , x any variable

(a) PM(7) = 0 , if 7 m (x &(not x))

(b) PM(9) : PM(r) ,if 0 *

(c) PM(note) = -M(e)

(d) PM(a v 7) = PM(9) + PM(r) if (0&P) (x & not x)

where * is relative to ordinary 0 - 1 logic.
In turn, since (b) yields PM having the same evaluation over

0 - 1 logically equivalent (") wff's , Hailperin uses the
Lindenbaum-Tarski probability algebra which identifies all
wff's E z which are logically equivalent.

In addition, an extended material implication is defined: For
any

(1) m - . ) r Wff(L)

with, say.

m
(2) FV(Z) = U FV(9) = (x I . Xn)

j=0

say, where n = n(z) , and hence we may write, w.l.o.g.

(3)i(x .. xn) 9 i = 0, .... n ,

and for any

(4) a0 and a (a

d
(5) aj = [a(b] g [0,I] i = 0,1'....m

define the (a,a 0 )-level probabilistic implication.

(6) (9 E al . . . , E am) P). (0 e a

iff, for all possible probability models PM:

if (PM(91) e a, .... PM( 9 m) E am) , then PM(eO) e a 0

The first basic result is the reaffirmation that the tauto-
logies of standard PL and ordinary 0 - 1 logic coincide. (See
also Rescher [214], pp. 184-188, for more details.)

Theorem (HailpE-in [102'], Theorem 2.1)

For any 0 e Wff(L)

0
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p~ob(a = 1) iff - 9 , for

two-valued logic.

The next result is a further extension of Hailperin's gen-
eralization of Fr~chet's theorem on the bounding of probabilities.

Theorem (Hailperin (102'], Theorem 3.2, 4.2)

Let Z 9 Wff(L) be arbitrary with all notation holding as in
(1) - (3)

Thenther exits L2mThen there exists LB , UB : (0,1] [0,1] , such that for

any a0  and a as in (4), (5) and

(i) for any probability operator P (including PM ) over L , if

P(Gi) e a , i = 1...m

then

L B(a) S P(%o) S LU(a)

where [LB(a), UB(a)] is the tightest possible bounding interval

for P(G O ) LB,UB are obtainable by solving a linear programming

problem.
(ii) e a. ....9 e a) p (0 ao)

m m prob ~ 0

iff

[LB(a), UB(a)] 9 a0

(iii) In particular, note that if m = n and

. = aJ(x I , .... xn) = x. , j = 1,...,n

then (ii) implies

(x e al....pob O [LB(a), UB(a)])

Note that part (i) of the theorem may be interpreted as a
sensitivity analysis for P( 0) , when the initial 9 i  (or xi  as

in (iii)) have probability values known up to interval-values. In
addition, note that the upper and lower bounding functions LU and

L are truth functional in form. Indeed, for 00 in pure disjunc-

tive or conjunctive form and initial 9 i = x i , Lemma 4 of the

Appendix, section 2.3.6, shows equivalently that LU  and LB  are

in t-conorm or t-norm form, respectively.
See also Chapter 6, following Cor. 1 and section 5.3 B for
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further discussion of probability bounds.

B. Lebesque-Stielties logical systen.

Use the basic theorem (McShane [174]: see also following

Appendix) that if f : Rq - [0,1] is of strong bounded variation

(SBV), there is an ? such that the interval functions Vr(f,. ) =

Vr(?,.) and the extended measures y. = p- where pf is a finite
f

countably addi- tive complete regular signed measure, where w.l.o.g.

Pf = f +- P -

f f -f

f+, f are nondecreasing positive increment monotone grounded
continuous from the right - and hence are generalized c.d.f.'s
yielding y f+ , pf- non-negative complete regular finite countably

additive measures. We say ? is equivalent to f .
Then replace in probability logic any c.d.f. by an SBV

function and in the extension to the Borel set level, probability
measures by these finite signed measures.

The interpretation and truth evaluation of strings proceeds
analogously, except that Sklar's Theorem no longer holds, in the
more general setting. It is assumed that # , is suffi'-iently

well-behaved that comb(not, &, Oor ) preserves SBV, etc.

In summary, given any A. j G 9A = assumed

w.l.o.g. as in the basic theorem,

%CAj(x,) = 1 - A.(xj)

r O
and defining C. i or

we can show that the following relations must hold

XC A (Xl . . .. . r
j=l,..... r

= II< & <X. E C A >IIj=1 ..... ri J

= Z (_,, card .

0C C r US

where

0



Symbolization and Evaluation of Language 161

Cr 1(  I :1 ° r & C e= Id) >

j=l . .. 

= (-1) card S+1 ((x (<x e A.>)
SxA.xj)jS or j j

Let us consider Lebesgue-Stieltjes Logic in further detail.
Note that all the theorems referred to, unless otherwise notated,
will be found in the Appendix at the end of this subsection.

Define the following important spaces:

d R
Sq = {f I f is a (simple) step function over R)

F q (f J f : q 
- R (Bcrel) measurable)q

EV q (f I f : -. R & f is BV (bounded variation))

SIV q {f f R q  R & f is SBV (strong bounded variation))

D = { f I f Rq  (0,I] is a c.d.f.)q

PM q {f I f : q  R is PM (positive increment monotone))q

5PMq (ff f : R is PM & SBV)

Recall the spaces of all dispersions over Rq, [0,I] , and

{01)R q , the space of all ordinary set membership functions over
Rq .

Thus, e.g.,

(0,1) q  [0,1]) fl F
q

( !; [0,13 , ] R t [0,13 V C [0,1n F q0,13 f

Sq q C]q q q

By Theorem 2, e.g., S q 0,1 R q  and hence sev q [0,] R q

q q

and ElV q n 0,1] are all dense w.r.t. [0,13 qn F over arbi-
q

trary q-intervals [-t,t q , t > 0 in LI-norm. By Theorems 6 - 8,
we may always identify (or need only consider)

MVq = (f I f : Rq _ p is a g.d.f. (generalized distribution

function)) ,

seVq = (fj f : Rq _ R is a SBV g.d.f.)

I
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PM = (f I f R q  R +  is a PM g.d.f.)q

SPMq = (f I f R q  R+  is a SBV, PM g.d.f.) 9 q

Recall C is the class of all q-copulas 0. , a subclss ofq
all conjunction operators. Then Sklar's Theorem may be reformu-
lated, involving in a key way generalized cartesian products,

q u D 1 .. x V , all q a 1

.C q
q-factors

where for any q-copula ,.

a] I q ,.#xfqd( I f. E . = , .... q)

Define the q-right closed ray class as

Rayq d (J(-l , y) I y e Rq )
q~

and note the bijective mapping rayq : Rq- Ray , where for all

y e , rayq(Y) d J(-.1 q,y) (We will interchange often rayq

and Ray .)

Define the class of all complete regular probability measures
over [ byq

9'rq (Pf I f I Oq _+ [0,1] is the unique complete regular

prcbability measure induced by f , for any
f C 1 ) , all q 2 1

It follows from bijection rayq and the standard construction

of complete regular probability measures pf associated with given

c.d.f. f (a special case of the Lebesgue-Stieltjes measure con-
struction) that a bijective relation exists between q andq
1rq , P : q +- rq , where for all f e tq

(f) = /f

and where

Pf(ray q(y)) = f(y) ; all y e R

In turn, it follows that Sklar's Theorem yields
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-=U (Tr q all q - I
Sq Cq &

where for any q-copula @&

Trlx - r l& &fq f e XP' f = 1,...,q)

and

f xX P. M E r1f X& x& q f 1 X@a *a q q

is consistently defined by the unique extension property of proba-
bility measure pf given any c.d.f. f

By considering co-Cq , the class of all DeMorgan q-cocopulas,

all possible generalized cartesian sums t may be obtained,@or

generated by 0or e co-C q Dual to the above development for x I

strings of the form fI t or f may be found as well as these

involving C , noting for all f e 0 qq

CPf = 1- /f = Pf(C") I

and finally, strings involving arbitrary mixed finite combinations
comb(C,x Ito) (or equivalently, comb(o . Special

cases of these, as in the development of general logical systems,
include the definitions for n I U A 1 , , etc., all depending
on particular choices of truth functional system 9 = (0 notO&'Por)

Thus a probability logic in the ey.tended sense may be considered as
the class of all finite strings involving a fixed 5 and 0.1S

It is required that x and t be symmetric and associ-@& @or

ative operations, and hence unambiguously extendable to any finite
number of arguments.

In general, a probability logic is not truth functional -
although clearly restricted to the left-ray level, since it reduces
to all finite strings of c.d.f. 's involving 5 , it is truth func-
ional. Let us consider this in some more detail:

Let f e 0 q g er I and defineqr

CPf X Pg = (I - Pf) x P 1 P (q) x p - p x g ,

where 1(q) : q (1) , and 1(q) x pg is the embedding of

P 9 r - [0,1] into q+ r  I where for all B e q , C e r

g )
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(1(q) x 0&g)HS x C) = Mj1(q)x g& (B x C) = 
M (C)

Define, similarly M. x~ 1(r) -Also, define

'(q) ,,,lr) ( x 1C

Note that Cpf is not to be confused with ,j~ since for all

B eB
q

Pjcf(B) = M-f(B) / j..f(B) = Pfu(B)

from the Lebesgue-Stieltjes construction, noting 1 - f is not
grounded but Is equivalent to -f which is grounded (see the Appen-
dix). On the other hand, note Cpf is not any type of measure (let

alone, a probability measure) and thus

C/jf(B) = 1 - pf(B) * p Cf (B)

Also, define, for B E 8 , C 6 M arbitrary

(Cpf x , Cpg) (B x C)

( (1 - /Jf) x . (1 -9 )g)(B x C)

=(1(q + r) -p. x(, 1(r) - (q) x., pg + ipf xp, Mg)(B x C)

(I -fB i 
M

g (C) + Pfx )(B x C),

P MfX g (CB x CC)

Similarly,

(.Ur t P9)(B x C)

= C(Cpr x4 6' Cyg)(B x C)

= (pf' x & 1(r) + (1(q) x. &J~ P 9 gUf )(B x C)

f (B) + p 9(C) -PfX (B x C)

f &9(Bt C)

where

B t BxRr) U(Rq x-),B (B x Rr) nl (Pq x C)

Compatability between t and (Por and C will be achieved by
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choosing ! to be any Frankian or modular logical system (see
section 2.3.6) . Then let t = t or

More generally, if comb(C~x@&, to) denotes any given com-
&P c or

bination of probability operators which can be applied (in a well
defined manner) to any collection of probability measures
jfj : 8 q - [0,1] , j = 1,...,n , say, then it can be shown that the

evaluation of the resulting (finite) string at any cartesian product
(or cylinder) set is obtained by replacing all probability operators
by the corresponding ordinary set operators in the comb function and
in its arguments, each probability measure by a corresponding carte-
sian product factor relative to the joint probability measure. That
is

(comb(C,x ,t o )(pf ..... ))(Blx ''XBn (i)
Ct(or I n= (P f X & ' 'x && gf n ) ( (c o m b ( C ' × t ) ) (B 1 ' ' ''B n ) ) ,

foral B e ,f e J = 1,...,n;nlIfo al 3  j q ,,

Furthermore, if this result is specialized to a ray qj(Y

qj

y iG R , J = 1,...,n , arbitrary, one readily obtains

(comb(C, x &, t or 1 n))(B1x''×Bn)

= comb'(PnotOa,@or)(fl(Yl) ..... fn(yn))

= comb'(4not'&0or)(YJf I(B1) .... 'Pf (Bn))

a truth functional system, when Bi's are restricted to rays. But,

for more general B 's , even for n = 2 , probability logic is not

a truth functional system since there is no function r such that,
e.g.,

(Pf I x Pf 2 )(B 1 x B 2) r(Jf I(B 1) Pf2 (B2 ))

for all Bj i Gq , J = 1, 2 (See the Preface for a specific

example. See also Rescher £214] for further properties of pro-
babibity logics.) The development of the concepts of marginal
probability measures, statistical independence and conditional
probability measures are all well known and will be omitted here.
(See, e.g., Neveu [184').)

Motivated by the above development for Probability Logic, let
us reconsider Lebesgue-Stieltjes measures and Lebesgue-Stieltjes
Logic:

First note that with respect to pointwise addition and scalar
multiplication, SBVq is a vector subspace of vector space 8Vq , in

the sense that for any n 2 1 and scalars Al ... ,A n , and

n
fl ..... n e SBVq (or E V ) , Z A f e SBVq (or e V )J=lJqq
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Denoting

'r dq ( Pf I f (g .c .d .) E EV q

where pf now represents a possibly signed measure corresponding to

q - q

mlrq ={.f jf e q 9 [0,1] 

A

Yrq = (Jf I f G SM q n 0,1]) ,
it follows that for A 1 ,...,A n  , n q (or q

n
Z Ajpf = P n Y r q (or E Wq)

j=1Z
J=1 

J j

and hence Yl is a vector subspace of vector space wq w.r.t.q q
scalar multiplication and addition as defined. Similarly, since for

n A A
0 -5 Al , . . . ,An S 1 , Z A 1 and any pf 1, .. f E Yq (or e Wq)

j=1 n

A A
Z Ai i= n E= Ymrq (or e mIrq)
j= 1 J n f

Z Af

A A

Hence !rq is a positive convex cone of Yr q and %'rq is a

positive convex cone of wr , noting that

A

qr q 9 YVq all q 1 1 , etc.

Metrics and norms can be introduced on any of the above spaces,
using the relation for any pf, Pg ,

dist(PflPg) = dist(f,g)

where dist may be determined by any appropriate function space

norm such as L - , L 2 - , or sup-norms.
Analogous to the Probability Logic development, let us next

enlarge %T" by the introduction of constants c : q - (c) which,q q
unless c S 0 , are non-measures;

Cm r - (c + if IPf m , c e }

2 -!F q (C + Pf I Pf E ?!1 q c G ),
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where c e R is identified with c : -q {c) and c + /f q q

(c + Pf)(B) 2 c + pf(B) , for all B E Bq

Again, Cq is a vector subspace of C r q under scalar

multiplication and addition. In particular, consider any
A A

Pf e %q (!?%qr) Then -pf = p_f q (Y% q) and

1 - Pf e Cfq (C!q)

We can denote 1 - pf as C , the generalized complement of

pf since for any y 6 Rq ,

(I - pf)(rayq(y)) = 1 - f(y) = Cf(y)

However, if f e Cv q then for all B e aq,

(I - pf)(B) = Mf(CB) + 1 - Mf(R q )

which will coincide with a measure complement only when, e.g., f
is a c.d.f. and hence y f is a probability measure (and thus

1 - f(R q ) = 0 )

Note as in the probability logic case, for any

f e ev n [0,1 I q,
q

Cf =  1 - f e eV q [0,1] and
q

Pef = P-f. = - Pf

and for any g : Rq _ R Borel measurable,

f g(x)dpcf(x) = - f g(x)dpf(x)
xe IR 

q xe IR

and that Cf is not grounded in general, especially when f is a
g.d.f. Hence, again

PCf = -Pf I - Pf = Cf

Now, analogous to Sklar's Theroem mentioned previously, define
ior any n a 1

C n U (SBVq n ((sBVq [0 ,i]R ,.)x & (5BV )n [0,I ]R

j=1 .. ,n 

n

#&q

Sufficient conditions (for the cases q, q n = 1) for
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membership in Cn i- given in Theorem 12. (It would be of some

interest to develop practical necessary and sufficient conditions
for membership in C n.)

As in the Probability Logic case, the more general Lebesgue-

Stieltjes development established that p : SBVq n [0,1] i q

d q
P(f) = pf , all f e SBVq n [0,1] R  is bijective where again

i f(rayq(Y)) = f(Y) ; all Y e q

and in turn

C(n) =  (f 1 Cn )

A A

= r ( q n (!q x _ q

j .nIq

Thus, the C n's are the classes of relevant Lebesgue-Stieltjes

measures which arise as generalized cartesian products.

Note that for all yj e R , J = 1,...,n,

(Pf × .x × /
jf )(ray q (y ) x..x rayq (yn))

= rayq(Yl~ X.Xyn)

(f x .xf )(y, ..... y
1 n 1 n

= a(f1(Y1 ) ..... fn(yn ) )

= &(pf 1 (rayq (y)). fn (rayq (Yn)))

analogous to the Probability Logic case.
On the other hand, eq. (i) does not in general carry over here.

Also, since probability logic is not truth Lunctional, Lebesgue-
Stieltjes logic is not also, at the Borel set level - even over
cartesian products of Borel sets.

A

Of course, all evaluations for any pf e YTq , e.g., may be

carried out by use of the minimal decomposition

f = (f)+ - (f)-

(f)+ , (f)- being strong BV PM g.c.d.'s. Thus, for any B E e
q

Pf(S) = (t +(B) - p _(B),
~(f)

0
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etc.
Analogous to the Probability Logic case, define also t' or

Again, as in the Probability Logic case, it follows immedi-
ately that C. x &, t& (at both the left ray and, more generally,

Borei a-algebra level) are unambiguously well-defined eneralized
complements, cartesian products and sums, i.e., symmetric, 7 so-
ciative, mn bounded above for x , max bounded below for +

and having marginal properties w.r.t. unity and zero, respectively.
Define also for CYr , e.g., generalized cartesian productsq

distributive-wise, analogous to the Probability Logic case, except
that 1(q) is replacable by a more general constant c(q) . Thus
(noting again, c = 0 reduces to the pure measure situation) for
any

Idf ± 01 E C! q and pf ± C2 e CY Ir r

(Pf ± cl ) x , (Pf2 c 02)

= Pf x & X f 2 ± c1 (q) x0& f2 ± Pf X &c 2 (r) + c1 (q) c2 (r)

= Pf1x P& f 2 ± ic (q)x0&f2 ±  f lX0&c 2 (r) + cI(q) c2 (r) ,

Similar expansion definitions hold for C and t , so that again9or

arbitrary finite strings of comb(C, x , t ) may be defined
'or

unambiguously upoin those Pf's E r l 's yielding cartesian productsq
in some C

n
For example for any g.c.d., f and g , the following DeMorgan

and modular property of t and x hold:

f g t P - ( f) 1 Pg)

= 1- (1 - Af x 1 - 1 x g + /f X Pg)

= Pf X I +1 x g - f P g

= Pftg I

where or may be chosen modular and DeMorgan w.r.t. p& : For all

x,y E 0,1] ,

(f t g)(x,y) = or (f(x),g(y))

= f(x) + g(y) - O&(f(x),g(y))

i.e., I = (pnot' P&' (or )  is Frankian (see 2.3.6), as in the

probability logic development.



170 Goodman and Nguyen

As a check on the associativity and symmetry of t or , note

that, e.g.,

P f t (Pg t h) 1 - (( - Pf) x (1 -( Pg t Ph)

-1 - ( - Pf) x (1 - p ) x (1 -Ph )

= (Pf t Mg) t Ph
Rq.

Returning to marginal measures, let f e SBV n [0,i) ,

j q.j

j 1....'n Suppose also that each f Is norMable, i.e., there

exists x-, (0) e Rq j U (+l . such that

= fj(x (0 )) sup q fI(x); j = 1,...,n

x .eR
J

Then for any 0 * C 9 (1....n) , the C-marginals

(f1 ..×fn)C : R -. [0,1] are all well-defined strong BV g.d.f.

functions, where qC z qj and where
je C

(f1X.Xfn)C =Xf.
jec~

In turn, these induce (via Theorems 6, 7, and Corollary I) 6
complete regular countably additive signed measures extending the
corresponding interval functions generated by the increments,

f j : B qj [0,1] , j = 1,.... qj f 1X× ' f n  q R ,

p~ × " "fn -C R I for all 0 # C S (.... n In addition,P(f 1 Xf )C q

define the C-marginal measure (pf :I -. n , by uniquely

extending the definition over right closed q - C rays rayq(y)

y = (y jJEC e R >

(Pf .Xfn)C(ray q(y))

d n
= pf x fn( x(

where

(0) if j E (1 ... Cn) C

zj = Y if j e C

= (fX-.×fn)(Zl... z n )
~ (z 1 . z
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X × f (yi)Jec 
J

= (fIx..Xfn)C(y)

Hence, for all 0 # C S (1,...,n)

(f X. 'xfn ) = "(f x..Xfn)C f C J

Let us call this condition, marginal consistency.
For given cp , marginals fl ,P are thus

@&-independent or non-interactive w.r.t. joint measure

f 1 ..& -x 6 f n

More generally, if f e SBV n (0,1] is normable withq
0 # C r {1, ... ,q) such that

sup f(x1,...,x q occurs for xj = xj (0), all J e I ... q) -4 C
sup f,. , ].. X )=,. .

not depending on any x. , j E C , then the C-marginal function
RcardC

fc : . (0,1] exists and w.l.o.g. is a g.d.f. strong By.

This induces marginal measure PfC : Mcard C -* [0,11 w.r.t.

/if : 8 q [0,1] (In the case of f being a c.d.f., one can choose

x(0 = + , j E C.) Again, it follows that

( f ) c = f f C '

If 0 * C,D 9 (1,...,q) with C n D = 0 and marginal
g.d.f.'s fC and exist, then fc and fD - and equivalently

P and Pf w.r.t. pf - are said to be P&-independent or

non-interactive w.r.t. f iff

fCUD f C x fD

(up to appropriate ordering of components), i.e.,

fCUD PfC &a D

noting fC f D f CUD are all normable, since f is. Conversely,

if only f = fCx fD is required, fC fD normable, then as in

the previous development fC and fD are appropriate marginals,

C D re apropriate.arg.na.s
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etc.
Consider now any t-conorm (or t-co-copula) or Since sup

is a special case of ,or ' the following extends the previous

concepts for marginals: Let G q c Rq  be at most countable. Let

f : Gq - [0,1] be a strong BV g.d.f.
Again, let 0 * C 9 (1,...q) be given. Define the

C-P or-projection, proj( or)C(f ) : card C [0, for a given truth

functional system ( not' @&' or )

proJ(Por)C(f)((xj)jEC) = for (f(x ..... Xq))

e(I,.... q)4C]

(without requiring the or process to achieve its limit, indepen-

aent of the remaining x .s) Then define for any

0 * C,D (1, ...., q) , C n D = 0 , proj(p or)C (f) and proj( or)D(f)

to be (or - P& independent or noninteractive w.r.t. fCUD (and

similarly projection measures proj(Por)C(f) and proj(,or)D(f)

w.r.t. PfC ) , iff
d he fCUD

fCUD proj(Por)C(f) ×  proj( or)D (f)

and hence &1

=x p(f).
HfU proJ(o)C(f) & p°(or)D

A natural question to ask here is what is the analogue of the
marginal consistency relation? Suppose f is normable. Then since

or 2 max pointwise, it follows that proj(or)C (f) and

proj(Por)D (f) are normable. Suppose also that & is right dis-

tributive over or (Examples of this include (min,max) and

(prod,max).) Then it follows that,

proj( or)C &CUD)(X)

&(pr°J(Oor)C(f), or (ProJ(, oryD(f)(7)))

or=proj(,por)C(f)

A similar projection consistency relation holds for proj(p U)D(f

NIote the relationship between truth functionality and

&-independence: Even when fc and fD are @&-independent w.r.t.
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fCUD ' e.g., truth functionality still does not hold for JfCUD

relative to Pf and Pf in general, unless % = prod, in which

case (for Probability Logic) statistical independence and
&independence coincide.

More generally, for a given logical system (C,x,t) , define
projection by, for f and C as above,

proj(t)C(f)((x )J c) x t=EG t )

.............q4C]

completely analogous to the truth functional case.

Conditioning

Recall that if X and Y are any sets and f X x Y - [0,1]

g : Y - [0,1] with f dominated by g pointwise, i.e.,

f(x,y) g(y) ; all x e X , y e Y

and is a given continuous t-norm, by the Darboux Theorem there

is a class of functions {f (. Iy) , 1 f y(" y)a X [0,1) , e Y}

such that

f(x,y) = a(fy(x~y) , g(y)) ; all x e X , y e Y

If is strict Archimedean , then for each y E Y , fy(" )

will be uniquely determined. Each fy(.y),& is called the

conditional dispersion of f given y w.r.t. . This result is

related to the Radon-Nikodym Theorem. Indeed, if now X = R

y = r with f e SBV U [0,1 R) , g 6 5BV u [0,1] R r , considerq r
P f B q - [0,1] and p : 1:r [0,1] , the associated Lebergue-

Stieltjes measures. In particular, one could have here
g = projY((or)(f) (changing notation) since

g(y) = proJy( or)(f)(Y) = Por (  f(x,y))

all xeX

a max f(x,y)
all xeX

2 f(x,y) , all x e X , y e Y
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Assuming all f(" Jy) E SBVq n [O,]Rq , y e Rr and g E SBV rn

(0,1] R r , then pf : q - £0,1] and p f(.Iy) : r ' [0,13 exist.

Thus, for all x e Rq  y E Rr

f )× g)(ray (X) x ra', (y))

(fy(" y )e x p& g)(xy)

= &(fy(xfy)%eg(Y))

f(x,y)

P f(ray (X) x ray r(Y))
q q r

and hence for all g : R R measurable,

f h(x,y) d)f(x,y) = h(x,yd(pfy(.1y) × 9 )x y)

xyER q + r  X,yER qx y

If in particular Pf(B,.) is absolutely continuous w.r.t

P (.) , i.e.,

Pf(B x C) S p (C) ; all B c s q C E 8 r then by the Radon-Nikodymgq' r

Theorem, up to p -measure zero,

dpfCx, y)

dpf(XY) S dp (y) dpg (Y)

dpf (x, y)

noting that the conditional - Radon-Nikodym derivative dpd(y)
dPd(y)

can be identified with Ply(" ) when = prod.

For example, if f is a c.d.f. with g = projy(4 or )(f) , then

g and f will satisfy the above conditions.

Bayes' theorem

Fix a truth functional system I =(not' 4& ' 'or)

rr
Let, for all x e X , f(. Ix ) :R r  [0,1] in SBV r  be given,

using conditioning notation, interpreted as the conditional data

(y) q.d.f. and g : R (q [0,1] in SBV given, interpreted as the
q

prior parameter (x) g.d.f. Then as a converse to the previous
development form joint parameter and data (x,y) g.d.f.

0
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f : q+r . [0,1] , where for all x e pq , y . Rr

f(x,yl 22 &(g(" ... f(ylx))

Under reasonable conditions (see, e.g., Theorem 12),

f : Rq+r _. [0,1) e SBV r

Analogous to the previous result, if f(. Ix) is normable for
all x E X and & is right distributive over or then projec-

tion consistency holds for g w.r.t. f Call this condition star(*).
In any case, determine projy (or)(f) :r _ [0,1) , the

averaged data g.d.f. and finally f(. Iy) - q- [0,13 , the
posterior g.d.f. implici+iv via thz relation

4e&(g(x), f(ylx)) = f(x,y) = 4,(f(xly), projy( or)(f)) , for all

qE rx E Rq  y G R.

As usual, these relations may be lifted to the corresponding
Lebesgue-Stieltjes measure level over the appropriate Borel
a-algebras.

Under the condition (*) , assumptions for ,or and

g.d.f.'s involved, essentially all (implicit form) analogues of
conditional Probability Logic calculus extend to the situation here.
For example, using abridged notation, the following hold:

For all variables x , y , z , and f : Rp+qr _. [0,1] , SBV

g.c.d.:

(1) f(x,z,y) = &(fx'zly),f(y))

Fixing y ,

(2) f(x,zIy) =  a& ((x1zHY), f(zIy))

Substituting (2) into (1))

(3) f(x,z,y) = ( &(f((xlz)Jy), f(zly),f(y))

Projecting out z (using condition (*) yields

f(x,y) = &(f(zly),f(y)) ,

so that f(zly) is consistently defined, and hencp (3) becomes
f(x,z,y) = (P&(f((xJz)JY , ftz'y)),

whence we may identify

f((xlz)Iy) = f(xlz,y)



176 Goodman and Nguyen

Also, we may always identify

f(x,zly) = f((xly),(zly))

Thus, eq.(2) becomes

(4) f((xjy),(zjy)) =  ,6(f(xjz,y) I f(zly))

= 6((f((xly~lzly)) I f(zly))

Hence, we may identify,

f(xlz,y) = f((xlyfl(zly))

the analogue of the well-known classical Bayesian sequential
"learning" equation.

Again, the Lebesgue-Stieltjes measnre extensions of these re-
sults should be mentioned.

Q ..... a_..&ns carry over to this example as in the general
situation with little change in forms. (See below.)

It follows from the previous results, given any truth func-
tional copula system 5 = ('not' 'P&' or ) I th: resulting Probability

Logic (PL) may be identified with the class DPL, of all well-formed

strings over all c.d.f's fl ..,fn I i.e., all

comb(C,x , 6 t )( fi .. Ifn)

extending uniquely to the class PL% of all well formed strings

over probability measures Pf 1.....Pf , i.e., all

comb(C,x6,tf )(Pfl ..... fn) , which can be further evaluated

using previous results.

Quantiriers.

Let Z be a given space called the base population. Let X
and Y be two other spaces called the X-attribute and Y-attribute
spaces, and form X x Y the joint attribute space.

Let hX : 7 X ancl hy : Z -# Y be measurement functions.

Thus, e.g., Z = set of all Australians living in June, 1933,
hX = ht (in feet), hy = wt (in lbs.), X = (0,10] (in feet),

Y [0,2000) (in lbs).
We wish to symbolize for two pnrt cilar attributes B e 9(X,

C E (Y)

I<quantification (for Z having B given C)>i

Let Q(Z) represent the class of all discrete probability
functions over Z (including deficient ones).

Let A E I(X x Y) represent a binary compound attribute of
X x Y and consider projy(A) e I(Y) 0
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Define also, for some fixed weighting-function p e Q(Z)

corresponding to -i (p) e (Z) ,
-1 -I

C1 (A) t ((hxlhy) (A)n 4) (p))
zeZ
d -1 -

C2 (A) = (hy (projy(A)) n 4-) (p))
zeZ

Since C.,(A) can be written

C2 (A) = t ((hxh y-(X x proy (A)) n - (p))

and

4 (s,y) = x 4A)(s,(x)xex)
Xxprojy(A) xeX

(t rA )((sX)x )
xeXX

xe X

SA(s'y) ; all s e X y e Y

then

€-1 (z1,z2)
(hxlhY) (Xxprojy(A))

Xxprojy(A)) X h1 z)

: 'PA (hx(zl),hy( z2))

= ( h -1 (z1,z 2 )(hx.hY) (A)

Assuming n - (p) and t (.) preserve the above inequality,
zeZ

it follows that % (A) : 4 C (A) pointwise.

Hence, (CI(A) I C2 (A)) exists, where

cP(u,v) = &( (u) , 4 (v)) all u,v e [0,1]
C (A) (C1(A) C2 (A)) C2 (A)

Now the class of all quantifiers such as "most", "some', "all",
"at least onc,", "ncre". "about 3/4", "sometimes", "6/7", etc. may be
identified with 5(H) , and for ai.y q',:3nt e 5(H) with 4)quante T(H)

and any B e T(W) , it is assumed quant(B) e 9(W) also with

quant(B) =  quant o 4B

I
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Thus, letting = ,z)zrz I form

11('Z e quant(Cl1(A)iC 2(A)))Il

= %quant( (CI(A))IC 2 (A))(z))

= 1J(quant of 2 (population) wor.t C2 (A) have ci(A)):;

To indicate the restriction of all c.d.f.'s to a fixed R
e.g., we use the notation DPL,

Lebesgue-Stieltjes Logic (LSL) includes Probability Logic as a
special case and centers about the development of the class DLSL,

of all well-formed strings over all g.d.f.'s f, .... fn I i.e., all

comb(C,x. al t &,t or)(fl. . .fn)

which induces a corresponding class LSL of Lebesgue-Stieltjes

measures

Pcomb(C,x a (o )(f! ..... n )

d comb(C,x&,or)(0fl 
.... f n

for a large class of such g.d.f.'s. Furthermore, the restriction of
fl..... fn to be also SBV and/or to have ranges in [0,I] , carries
over to the corresponding measures. (For example, Corollary 2
(Appendix) states that fl ... fn g.d.f. SBV implies Pfl.....Pf

are finite.).
Note that when fl .... fn are restricted to have ranges in

[0,1] , then any string will also have range in [0,1] , for either
Probability Logic or Lebesgue-Stieltjes Logic. In either case,
using the fundamental membership function P , we can bijectively
assign attribute A. to f:

A j - (f) E (p qj - (f :R . [0,1]) I

so that

fj = A j = n ..... n , say, and define attribute

comb(C,x t E (R) ,

by

comb(C,x ,t )(A 1 ..... An)
& o P or

- cob ×& o)f n
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with truth evaluation, for any y. E MiR , j = 1,...,n

E comb(C,x ,t, )(A1 ... An)>"<(Y~jl.... n & @or

= comb(C,x ,t or )(A ..... An) (Y1. y) ( [0,]

A similar procedure may be carried out at the Borel a-algebra
level. Thus, for any B j 4 [B qn I with f " If

c.d.f.'s, now letting attribute Aj correspond uniquely to f,
Jj

'A 4) (P ) 4E q f q- _( [O,1J) , j =

3 j qj f q.

1<(B )j=I,... ,n comb(C,x 6,t, or )(.A , ... ,An)>11

= Tcomb(C,x t )(A ...... A n)

cc or 1 n= comb(C'X a't or)(ifl 1..... Pi ) (B I '..... Bn) [0,I]

This symbolization allows a natural setting in extending clas-
sical set relations and definitions to attribute forms. Definitions
for generalized unions U , intersections n , subset relations I

incidence relations A and functional transforms t may all be
motivated by this structure, even though the logics involved are
strictly not truth functional. The latter condition only limits the
full evaluatoin of x and t in terms of marginal components.
Instead, evaluation of all relevant joint c.d.f.'s or measures must
be determined.

Discrete spaces

If in all of the previous development, either Rq's are re-
placed everywhere by discrete subspaces or all relevant functions
are restricted to be purely step functions, then the results spe-
cialize appropriately. PL is thus not only generated by strings
over Cq (the prime from here on will indicate appropriate

restriction to a discrete subspace X (q )  of Rq , etc.) but also,
equivalently by strings over QI where

= h I h is an ordinary or deficient probability
q]X (q )

function over X , i.e., h e [0,11 with

Z h(x) : 1)

xex (q)

Thus,

Q = {pf(")) f e 0' (including deficient c.d.f. Is),etc.q
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Attribute-events (This extends Zadeh's concept of fuzzy events
r285j.)

For any f E V qn [0,1] ,and B e E , as we have seenq q

f (B) = J B(x)df(X) is the Pf-measure of B

In turn, for any attribute A e 9(R .q..h A C , we mayq
define

Pf(A) f A(x)df(x)

XCE q

Thus, the first extension of BV ql [0,1] and its class of
q

strings DLSL over points in Rq , to LSL over Borel sets in'

Eq may be once more extended in Its domain to "Borel" attributes as

above.

Also note that if B e Rq is a finite set, then B induces

P B which is equivalent to 0B,
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ADendIx to 2.3.9.B Functions of Bounded Variation in Rq

The partial order 4 over R is defined by, for all y = ]
yqe R.

= : 1 q 
, x y Iff xj S yj , for j=

Xq

For any x,y C Rq such that x S y , define the corresponding
closed q-interval i(x,y) by

J(x,y) = {v v E & x S v S y)
q
x [xjY]

J=1 J J

noting

J(x,y) =x,y] , for x,y e R

and for x S y ,

J(x.1 , y. q) = [x,y]x... xx,y] =Ixy] q

Also, define for any x = j , y = ( q

x q yq

X Ayy XVy 1

X A Y = min(x J , xj v y i max(x., q

Then

a(x,y) J(xAy,xvy)

Hence

J(O qX) = J(O qX) , if x ?- 0

J(OqX)= J(x,Oq) ,if x S Oq

For f R R , define for any x S y e , the first dir-
ference

A,(fJ(xy)) 4 f(y) - f(x)
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For f 2 , R define for any

x = X2 y Y2

the second difference

A 2(f'j(x'y)) = '41('dl1(f(o,,x2) J(xl,Yl)) ,J(x2,y2))

= f(x I ,x2 ) - f(ylx 2) - f(xl,Y 2 ) + f(yly 2 )

In general, for f -, R andix [
X = : S y = : J Rq , the qth difference

Xq yq

Jq(f J(x,y)) 1 l('dq-1 (f(., ,q ), J( :~ : )) j())
x q, , , xq

q -

Z ( ) q-) f(x I + e 1 .(Yl-xI),....x q + 9 q(yq-x q))
j 0 o i l* ... ( 0a) , q

qJ

Let J(x jyj) , j =.....m , be m disjoint or contiguous

d m
closed q-intervals and region K = U J(x.,y ) Let a be any

i=1
partitioning of K , where each J(x ,yj is partitioned into dis-

joint or contiguous q-sub-intervals. Define the variation of f
over K w.r.t. 0 as

Vr(f,K,2) d I Zq(fJ(u,v))i

J(u,v)Ea

and the total variation of f over K as

'.r(f,K) d sup Vr(f,K,C)

(all 0 over K)

The total variation of f over R and Rq are defined,
respectively, by

Vr(f,R ) = lim Vr(f,J(0 q,t.l q))
tq +C0



Symbolization and Evaluation of Language 183

Vr(f,R q ) = lim Vr(f,J(-t- q,t 1 ))

etc.

f Rq  R is of bounded variation over region K S Rq iff,
by definition,

0 5 V (f,K) < +-r

f : -. R is of bounded variation (BV) iff for all bounded

K a R

V (f,K) < +=r

f : Rq - R is of strong bounded variation (SBV) iff f is of

bounded variation over Rq i.e.,

Vr( fP q ) < +_

f : R is nondecreasing (ND) iff for all x S y e Rq

f(x) S f(y) It follows that f is nondecreasing iff f is
nondecreasing in each argument separately.

f : Rq R is positive increment monotone (PM) iff, for

x y E , Aq(f,J(x,y)) a 0

Clearly, if q = 1 , f : R - R is ND iff f is PM
However, for q 2 2 , neither property in general implies the other.
For example:

2
If f,g : R R J are arbitrary, then h JR -. R defined by,

for all x,y e R

h(x,y) f(x) + g(y)

is such that for all x [ 1 < y ,2
x 2 Y 2

J 2 (h,J(x,y)) - 0 ,

yet f and g may be chosen each, e.g., decreasing in x and y
separately and hence h is not ND but rather decreasing.

2
On the other hand, f : R2 R given by, for all x,y e JR

f(x,y) = max(O,min(1,l-(l-x)(l-y)))
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is ND , but for any x =[x2 < = [Y2 . .

.j2(f,J(x,y)) = -(YI- Xl). (y2- x2)

Let f ;q R C 6 D = (1,2. .,q
with C =(j 1 . .. . . m 1j <...< , m q ,

D= 'k 1  k I k<...<kq m S q and y = : &

fkq-m

Then the (C,y)-marginal function f :Y m -. IR is defined by, for
xj i y

all x= m

f C'y(X )  d f(- (x,y)) ,

where

z x. if m

q Yk t  if i k t  tS q-m
- q

If also, sup (fC0 y) < +- , occurring at some
Y 1E IRq-m

y E q-m (+ q-m then f = f (Cy : m is called the

C t marginal function of f
Let f : .q . Define f to be hereditary Pm 1ff for all

0 0 C 9 (1- q} , and all x . m fCx R card(C) _ R is PM

On the other hand, define f to be grounded iff for any

x { : E , f(x) = 0 , if there is at least one vaht'
Xq

x i ; i < q such that x. -

1Q
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Lemma 1.

Let f : .

(I) If f is PM and grounded, then f is hereditary PM.

(ii) Suppose f is PM. Then if either f is hereditary PM or
grounded, f - also ND. In the case of f being grounded, ND, in
turn, implies .ht f L 0

Proof:

(i) For example, for q 2 , for J 2 (f,J(x,y)),

x letting x2i "' jY2

yields 0 S f ( 2 (YI) - f{l)2 (Y2 ) 
= f(yI'y 2 ) - f(xl'y 2 ) - 0 + 0

(ii) From the definition of A , for x 5 y e Rq ,q
f(y) - ffx) = 7 mA rd C G,(x C) (xjD) ' yl )) ,

[0 Q C ~~ ~

D (1,..... q} 4 C

(xjC) indicating the restriction of x to C , etc.
Thus, hereditary PM implies ND
If f is grounded, let

x I

-x x y.,-1 , .x = X j y y yj , j 1 ., .... q

-" xj+ i

x
q

Then, taking limits

x I  xI

xj_ 1  x j-1
0 S J q(f,J(x,y)) = f( yj ) - f( x )

xj+l x j+

xq Xq

j 1,2,...,q , implying f i ND

For any f . Rq - R define the total variation function
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R+) - by, for all x = R1

d u Cq x) .
r(f)(x) = -)q Vr(f,J(0 q x))

where

V. q(x) card {j 1 1 :5 j S q & x.i < 0)

Lemma 2

Let f:Rq R

(i) If f is PM then f is BV with for all x S y e

Vr(f,J(x,y)) =Vr(r(f),J(x,y))

= 4(f,J(x,y))

q (r(f),J(x,'))
qq

(ii) If f is BV ,then for all x & y eR

Vr(f,J(x,y)) =Vr(r(f),J(x,y))

' q (r(fLJ(x~y))

j4 q(f,J(x,yflj,

and hence T(f) is PM .In addition, Vr(f,J(x,y)) as a function

of intervals J(x,y) S p is finitely additive.

(iii) If f is PM and grounded, then for all x E R

Vr(f,J(--l q x)) = 4d (f,J(--1 qx)) =f(x)

Theorem I (McShane, (1741, p. 250)

(i) Let f : -.qR be BV .Then there exist
f)+ ,(f)- : RR PM such that

f = (f), + )-

is a minimal decomposition, i.e. , for all such possible represen-

tations, (f) + and (f)- have minimal total variation. (f)+ and

(f) may be defined by
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(f) + J(r(f)+f) (f)- = !(r(f)-f)

I Thus,

r(f) = (f) + + (f)-

Also, or all x S y e Rq

+- > Vr(f,J(x,y)) = Vr(r(f),J(x,y))

= Vr((f) + ,J(x,y)) + Vr((f)- , - J(x,y))
= 'q((f)+,J(x,y)) + 4q((f) ,J(x,y)) = q(r(f),J(x,y))

If also (f)+,(f)- are grounded - and hence f is grounded

then for all y E Rq ,

Sq(f,J(-- qy)) = -q ((f)+, J(-- qY)) - 4q((f)-,J(-q , y))

= (f) + (y) - (f)(y) = f(y)

(ii) Conversely, if f1 1f 2 : Rq  R are arbitrary and PM then

f = f - f 2 Rq  5 R !s BV1 2

Remarks.

1. The identity function id IR -# R is PM with
Vr(f,J(-t,t)) = 2t , for all t > 0

2. Let Q = {J(xj~y ) j = 1. m) be any collection of

disjoint or contiguous closed q-intervals and A A.. .A m  any

m
constants. Then the step function f = Z A is of BV

j=I J(x ,yj)

with

m
Vr(f,[-t,t]

q ) = Z jA 1.2 q

j=1 J

3. For any f -. R R , if f is PM or NM (non-increas-
ing), or a finite sum of bounded unimodal or multimodal (finite
number of modes) functions, then f is BV

Lemma 3

Let f : Rq  R be PM (and hence BV) and grounded (and
hence by Lemma 1, ND). Then

f is bounded iff f(+-q) < +- iff f is of SBV

p
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Proof:

If f is ND and bounded, it follows that f(+lq) < +

If f(+l q) < +- , then for all t > 0

Vr(f, [-t,+_]q) =A (fJ(-t-1 q,+Wl q))

q

qq -q

. • ]f(=q) = jqf+ q < +
J=o

q

~~~ q Lf'+") = ~f(+:.l) < +

+=>Vr( f,[-t,+_] q ) = f(+_,q + q (-I) q-J. gi(t) .

each gki (t)lis a sum of a terms, each of whch contains at

least one term of the form f(. ,-t,...) , which by the grounding
property of f ,for t sufficiently large, is arbitrarily small.
Hence , f (+ -q) < 4-W 

l e

Theorem 2 (McShane [174], pp. 125, 230) - Basic approximation I.

(i) Let f : Rq _0 R be bounded and (Borel) measurable. Then, for

each t > 0 , f is thus (Lebesgue) integrable over [t,t]q  and
hence there exists a sequence of step functions and hence strong BV
functions such that

f t n = At,n,j' S(t,n,jYt,n,j)

J=1

in R , n = 1,2,3.....

such that the L1-norm convergence

lim If(x) - ft,n(x)Idxl = 0
n-#Q xe[_t,tjq

holds.

(ii) Let f : Rq _ R be integrable over Rq Then there is a
sequence of step functions - and hence strong BV functions,

6
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M
d n

fn= Anj' J(xJ=1 nj'ynj
)

in R q , n = 1,2,3..., such that

lm f I f(x) - fn (x) dx = 0

XE Rq

(iii) Let f : Rq _ R be such that there is an to > 0 such that

(locally) over Rq _4 [-t,to0 q , f is of BV For example, f

may be PM or NM over q A [tOto q . Suppose over [-t ,t
]q

f is bounded and measurable or integrable. Then there exists a

sequence (f ) of BV functions f : Rq - R such that

lim f I f(x) - fn(x) I dx = 0

Proof: For example, if f is bounded and measurable over
[-t , t ]q , and f is BV over R q  [ [-ot ]q , define

fn =n f 0n + Pq 0 q f ; n 1,2.....

Remark: Result (iii) above can be modified for f assumed to be
SBV, whence (fn)n=,2... becomes a sequence of SBV functions.

Let f : Rq _+ R be PM . Recall that
Vr(f,J(x,y)) = A(f,J(x,y)) , as a function of closed intervals

J(x,y) S Rq is a finitely additive non-negative interval function.
Then from standard measure theory constructions (analogous, e.g., to
Lebesgue measure theory), a countably additive non-negative measure

p extending J(f,.) is induced over y(PfRq), the class of all

p f-measurable subsets of Rq , a o-algebra. In addition, let

T(pf Rq) be the class of all p -measurable functions g , i.e.,

-1 (B) E T(jf,Rq) for all B e a I  and L1 (PfB) T f(pfB)) to be

the class of all pI-Integrable functions over B

Theorem 3 (McShane (174], pp. 262-263, extended)

Let f : Rq -oR be PM (and hence BV) Then

I
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(i) Rq

and

(ii)q f

(since for any B e 8 1 , and g e F g-1(B) E q and hence-1 q
g (B) e Y(pg ,Rq))

n
(iii) If g =Z A A  A ... A E F1' q

with A1 ..... n real constants, then

n
.g(x)df(x) = g(x)dpf(x) = Z A.. { f (A (x)dpf(x)= Rq  x G Rq j=l RX q j"

f(PAij x)dijf(X W dp(x) = pf (A)

etc.

Theorem 4 (Dominated convergence, McShane [174], p. 276)

Let f : Rq R be PM . Let g : Rq _ R be such that
g e (OIf,Rq) and g is bounded by, say, M < +- . (This is
guaranted if g r F and g is bounded by M .) Then, for any

J(u,v) E R q and

f g(x)df(x) S f ig(x),df(x)
)x E J(u,v)I x E J(u,v)

:5 M0 f df(x)
x e J(u,v)

= Mo.Pf(J(U,v))

= Mo Vr(f,J(u,v))

< +

and hence

g e L'(PfJ(u,v))
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Theorem 5 (McShane [174], p. 287)

Given f : Rq  R BV , let for any t > 0,

f = (f)+- (f)-

be any minimal decomposition of f into (f)+ and (f)-(PM)
Then f induces a complete regular countably additive, signed,

measure pf which extends interval function

A (f,.) = 4q((f)+,.) - 'q((f)-,.) = Vr((f) + ,. ) - Vr((f)-,.) , such

that

Sq 9 Y(Pf, Fq) = j(P(f)+,Rq ) n ((f)_,R q )

and

Fq S 5(pfR q ) = V(p(f)+,R q ) l 5(p(f)p , Rq)

and for any B e y(pf,R q )

L 1 fB) = Li1 P +,B) n LI(P ,B)(f)+ (f)-

Also, for any g e L(O(f,B)

f g(x)dpf(x) = f g(x)df(x) = f g(x)d(f)+(x) - f g(x)d(f)-(x)

xE B xc B xEB xeB

is consistently defined, independent of the particular (minimal)
decomposition.

Remark:

If in Theorem 5, c is any constant, (f)+ may be replaced by

(f)+ + c and (f)- by (f)- + c , with no other changes.

Theorem 6. (McShane [174], pp. 291-292)

Let f : Rq  R be PM Then there exists ? : R which
is PM , right continuous and grounded and hence ND and
non-negative, such that
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(i) Y ("f Pq ) !;: ' (P_,, q ) f 0

f

and if B e Y(Pf R q ) with Pf(B) < +0 then yf(B) = (B)

(ii) For any J(x,y) E 8 0 Q(PfR q ) ,

Pf(J(XY)) = p (J(x,y)) = 4q(f,J(x,y)) , etc,

Also, as in Theorem 1,

P (J(-1q ,y)) 4 q (TJ(--1q,y)) = T(y)

(il ) (PfIRq )  g (p~,Rq) ,

f

(iv) L(1 (,B) L (p~,B) all B e :(pf,Rq ) and if
f

g e L (,f.B) , then

f g(x)df(x) =f g(x)dl(x)

xeb xeB

Call any such T as in Theorem 6, the equivalent PM
generalized distribution function (g.d.f.) w.r.t. f

Corollary I

Let f : Rq _ R be BV with minimal decomposition

f - (f)+ - (f)- It follows immediately from Theorem 6 that
extending the above definition, there is an equivalent generalized

distribution function ? w.r.t. f , i.e., T = (?) + - (?)- is BV,
right continuous and grounded such that all of the results in

Theorem 6 now hold for this f , since () +  Is a PM g.d.f.

equivalent to (?)- and (?) is a PM g.d.f. equivalent to (f)-
Hence

Pf (J(--q,y)) = i (J(-Iq,y)) = q (?,J(--l q,y)) = T(y)

all y e Rq , etc.

0
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Theorem 7

Let f : Rq _ R be of SBV.
Then

(I) There is an equivalent generalized distribution function

Rq  p w.r.t. f with

a minimal decomposition, () +  equivalent to f+ and [ ) equi-

valent to f- (generalized PM distributions) such that ( )+

()- , and T are all SBV

(il) If also, f is c-grounded for some constant c , i.e.,

for any x = : ,R
q  f(x) = c , if x. = - for some i

#Xq j3

1 - i S q , then we can define,

V V
a. (f) + - Pf (f) - + Cfc

V +V

where af , k 0 constants and (f) and (f) are legitimate

cumulative probability distribution functions over Rq (c.d.f.'s),
V +V

i.e., (f) and (f) are: PM, grounded and hence nondecreasing
nonnegative right continuous, and SBV with

(f) (+-1q) = (f) (+o1q) 1.

(iii) Conversely, if f = fI - f2 , where f1  and f2  are

PM generalized distribution functions, then f is a g.d.f.

(iv) Conversely, if f = a-f 1 - bf 2 + c , where a,b ? 0

constants and c is a constant and fI and f2 are c.d.f.'s, then

f Is a c-grounded generalized distribution function. Note that for
any q-interval K ,

Vr(f,K) = aVr(fl,K) + bVr(f 2,K)

Proof:

(i) f SBV implies for the minimal decomposition

f = (f)+ - (f)-, (f)+ and (f)- are PM and SBV Theorem 6

implies ? and ?_ are equivalent PM generalized distribution
functions which are strong BV and by Lemma 3.
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0 Sa + , /f = (,)(4-W-Zq) < etc.

Theorem 8 (McShane [174], pp. 258, 291,301)

Let A 9 I(Rq) be a (non-empty) a-algebra and P : A R J a
complete regular countably additive signed measure over A Then

there exists f :Rq -. R g.d.f. such that p extends interval
function A(f,.) and such that

(i) A l(pf,R
q  ,

(ii) 9(/,Rq) Z I(ljRq) with p(B) = pf(B) , for all

B e 9(p,Rq) with y(B) finite,

(iii) LI(p,B) S LI (fB) ; all B e A and for all

f e L1 ( .,Rq) ,

f f(x)dp(x) f f(x)dif(x)
x6B xE B

Corollary 2

(i) Let y A - R be a complete regular countably additive

finite signed measure over A Then there is an f : Rq _# R gen-
eralized distribution function which is SBV such that (i), (ii),
(iii) all hold in Theorem 8 ( p extending interval function
Vr(f,.))

(ii) If f : JRq - R is SBV , then there exists a complete

regular countably additive finite signed measure pf over A

extending interval function Vr(f,.)

Proof:

(i) Use Theorem 8 to obtain f inducing p Then since

+w > P(R q ) = P( ) = Vr(f,R q )

f must be SBV.

(ii) Use Theorem 7, yielding ? SBV general distribution
function equivalent to f and hence

if(Rq) = p (Rq) = Vr(?,JRq ) - Vr(f,R q ) < +-

6
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Call, for any BV f : Rq - R , uf : 8 q [0,1] , theq
associated Lebesgue-Stieltjes signed measure.

Theorem 9 (Hahn-Jordan decomposition)

Let f be any c.d.f. over R Then there exist constants
1 A1(f),A 2 (f),A 3 (f) 2 0 ,AI(f) + A2 (f) = 1 A2 (f) = A 3 (f) + A4(f)

and hence A 1 (f) + A 2 (f) + A3 (f) = I and c.d.f.'s fl f f 3' f 4

according as AI(f),A 2 (f),A 3 (f),A 4 (f) are positive such that f

is discrete (finite or countable), f2 is continuous, f3  is abso-

lutely continuous and hence probability density function (p.d.f.)
0 qfc.. 3 exists in Iq almost everywhere (Lebesgue) and f4  is

continuous and singular, where there is a set 0 * A c Rq with

Vol q(A) = 0 and f df 4(t) = Pf4(A) = 1 , and

teA

f = AI(f)-f I  + A2( f 2

= AI(f)-f I  + A 3 (f).f 3  + A4(f)'f 4

f2 = (A 3 (f)/A 2 (f)).f 3  + (A 4 (f)/A 2 (f)).f 4  ' etc.

Conversely, any probability mixture f = A' f1 + A 2 "f2 + A 3 "f3  as

above determines a legitimate c.d.f.

Remarks:

Thus, if f : Rq - R is of strong BV , then f may not only
be decomposed into its minimal forms, written w.l.o.g. through
Theorem 7 as

i (f)+ - (f) - af. (f)+ - f. (if)- + c

V V
but by Theorem 9, the c.d.f.'s (f)+, (f) may be further
decomposed so that

f S 13 i ) f (1) t 7f ( f(3 ) f (4)

where

S)+) V Vhf(J f'Aj((f)) - Af. A((f) )
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d + - j 1
fr af (f) - if (f) ; j = 1,3,4

f is a discrete generalized distribution function,

f(3) is an absolutely continuous generalized distribution function,

f(4) is a continuous and singular generalized distribution function,

etc.

Hence,

jjf = /. f+ - p.f)_ = af./ )+ -Y'L f (f) =f(y) - PP )~

etc.

Lemma 4

Let a < b be constants and define for all u,v e R

G(u,v) = maxfIO,min u - --a -a , i

Then for any h,k ; 0 ,

1 min(h,k), if u < v < u + h or

.4(G, J ([ [7k 1 b-a< < v + k
k0 ,if u + h - v or

v + k S u

Lemma 5

Let a < b be constants and define for all u,v E R

u~ a v -a
a Va , if a S u,v 5 b

u a ]

H(UV) max O,min[l a ,I , f v > b

max[Omin 11-v - } , if u > b

0 , if uS a or v-< a,

where F is an absolutely continuous c.d.f. over [0,112 with
p.d.f. f bounded by c0

Then for any h,k Z 0

,,(,,J( [U], [u + h ) ) = [ 1 fix - a , y - a] ddv + + k (b - a) 2 E---a dxdly

max(a,u)sx.min(b,u+h)
max(a,v)Sy5min(b,v+k)
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c
o2 hk.

(b - a)2

Theorem 10

Let f,g :R - R both be of BV.
Le 2 R2

Let H R - R be defined as in Lemma 5 and define H 2

9 by, for all x,y E JR

- d
H(x,y) = H(f(x),g(y))

Then A is of BV .
Specifically, for all t > 0

c

Vr(HK b 0 
2  .Vr(f,[-t,t]).Vr(g,[-t,t])

Proof: Use Lemma 5 directly.

Remark:

Theorem 10 may be extended in the obvious way to n variables.

It also can be modified - by replacing BV by SBV for f and g -

to yield H being SBV

Theorem 11

Let f,g : R - R both be of BV.
Also suppose, for any t > 0 , f is continuous over [-t,t]

except possibly on a finite subset of [-t,t] of cardinality mf t

and similarly for g over [-t,t] , continuity holds except possi-

bly over a finite subset of cardinality mg,t

Suppose finally that for all t > 0 , over [-t,t) , f and g

are such that there exist finite integers nf t  and ng't I such

that for any u e rng(f) , v E rng(g) ,

- nf,t,u -n gt,v
f (u) = U I f,tu,k; g  (v) U Iu) =l U () k=l g,t,v,k

k=1 1=

where each If,t,u k ' Ig,t,v,k denotes a general interval in R

(i.e., either a single point, an open or closed or half-open, half-
closed interval or a ray, etc.), and where

nf,t,u s nf t I ng,t,v s ng,t

(This concept is related to the Banach indicatrix. See, e.g.,
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[181'], pp. 225-229.) 2 2
Let G : R 2 R be defined as in Lemma 1. Let P 2 R be

defined by, for all x,y e R

(xy) d G(f(x),g(y))

Then is of BV.
Specifically, there is a finite constant t > 0 , not

dependent on a or b , such that

Vr(GKt) t it/(b - a) ; all t > 0

Proof:

Let t > 0 be arbitrary fixed.
Let the discontinuities of f over [-t,t] be denoted

-t : x (I  t) < x(2,t) < . < x ft 't i

while the discontinuitie, of g over [-t,t] be denoted

-t :5 y (I t) < y(2,t) < y y(Mg9',tt)S

Let

a,= x)x .  x

where

-t =x 0 < x I <... < xm t

represent any partitioning of [-t,tj as x-axis and

a2 (yo..j'.....yn

where

-t = yO < yI < ... < yn = t

is any partitioning of [-t,t] as y-axis,
Thus a I x a2 is the corresponding rectangular kiroduct)

partitioning of Kt = [-t,t]2

Refine a I  and a2 to Ci and a , respectively, so that

for any r, I s r : mf t  and any s 1 s s : mg't I there are

unique integers i(r) , 0 : i(r) m-i , j(s) , 1 j i(s) ! n-I
using w.l.o.g. , the same notation for Q. as for a , j = 1,2,

s tsuch that
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gi r r < x j(r)+1 < X i(r)+ 2  < . .< x i(r+l )  :S x~r 1

suitably modified if needed for r = mf, t , and similarly

< y(s) < Yj(s)+$ < .. < Y J(s+l) : y S < Y j(s+l) + IVj(s) -_

In turn, define for all I S r : mf , I :s m gt

Ex x ]x [-t,tj0 r = i(r)-i 'i(r)+l

d
Dr [-t,t] x [YJ(s)- 1 Yj(s)+1

and parzitionings of C r and Ds I

d x x i  x -t,t]r

M -t t] x (yj yj yjr = J(S)-l' J(S) (s)+1

Also, define w.l.o.g.

F r s  [x i(r)+10 x i(r+l)_l ]  X [yj(s)+l' yj(s+l)-I
]

toting that f is continuous, and hence uniformly continuous over
the first factor and similarly, g is uniformly continuous over the
second factor.

Let

r,s ( r)+l (r)+2' (r+!)-1

x {yj(s)+1,yj(s)+2. . .yj(s+1)_l }

be the corresponding rectangular partitioning of Cr,s

It follows from the additivity property of V (,[-t,t),)

w.r.t. Q-intervals in 9 for any partitioning 9 of [-t,t] that

V (G,Kt,Q ×Q2 )

m f t mg t

gg~t
:5 z V r(G,C c r) + Z V r(G,D s M)s ) + V r(G,E r,C ).s

r=1 r= r: r r f t ~ ~

Consider now Lemma 5. Define the range values (not necessarily
distinct)

du i =f(xi) ,i =O 0,....m ,
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vj g(Yj) . =0.

Define the relations

A= {(u.,v.) I u.i ~v. < u i 1  or ui< V SU.i~

or u + < v :5u or U i 1 S v j< U )

and the dual

-((u.v. v v.u < v + or v.i < u. v.j+

or v J < U i v or v j+ 5u . < V.

For any xiIyj

= 0 ,if Ti~ = + or vj~l vj

.f x .1( x i o r£' + 5 u l +
~ {j+1J 3)a

* 0 if (u..V)E A t U %t

For any I S r :5 mf~ . S sS m mgt I define

1r =u I (r) + I S i :5 i(r+l) - 1),

9s (V I J(s) + 1 :9 j :5 j (s+i) - 1)

x r,s LI (U j u 1 EQ r & V 1 E with (u1,v) E A)

For any ve g define

Ir~s (v {Ui U. E C-I wIth (u v E A )

Also,

V .(G~c,C rn-I (6,j[x i(r)-1 [ i(r)])r= rly r I [I~ H

+ m- Ix (~J i(r)] x {i(r)+1])I

S=S Ils II s+l H

2n t 1
b~ - a i~u -ir-lljl v.

j~o i~J
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rn-1
+ z min(Iu ir+-ui~~'v~-j1

Similarly,

V (dD 'M 4n~ f't ju. Ui

i=0
Now, fix any li r s mf' I S~ s S mg 9 and consider

V r (GE r, r,s )

Given a~ 1 refined to a ' refined to Q' fix 02 and
refine a! further to Ol over Lx iw)I .xi(r+l)-l] such that
again w.l.o.g. using the same notation,

max Iu i 1 - uiJ < min Iv j+ - V~i

pThis implies
r = r~sv j

Let

r,s I(xl r)Iir1 -1 s)lssjsli
(ui,v) em A)

Hence, using Lemma 2,

[Xa x a+1

.j~ s a ~ j ai

s e iErs(v j) fYa e (uv)
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0
- (4nf, n u-i"i/(b-a))

J s u rs (j

a (r+ ) -1
4 nftng,t lu. 1 - u I

b -a i=i(r)+l

Next, define

r. d ((xiyj) I i(r)+ :s i :S i(r+l)-1, j(s) + I s j < j(s+l)-i,
(Ui,v) e m -4 A)

and

Sr,s E q& u i e 5 with (ui v E m A)

Now, defining w.l.o.U.

a (011) d u. <A (a dm a
r,s n r,s 9 max(1 (r)+1_<i~i (r+1)-1) (i (r)+liii(r+i )-i)

it follows that if v1 6Ar,s  then

v a <V or v -S a < v orI rs J+1 i+1 r,s
v < Ar,s S vj+ I  or vJ+1 < Ar,s & v,

Consider, e.g., v £S ar,s < vJ+ 1  By continuity of

S YOS g -(a r,s with y1  £ y0  < y j+, with y e 'ta rsk

for some k , 1 S k S ng,t,a s n gt Thus by Lemma 5, we must
r,s

have

Y g,t,arsk +1

Hence, for a given it" , there can be at most
1'

2.ng,t vj E Ar,s Thus,

I 4(~3( l a+1])
.(Xa, ) , e Lr,s

0
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I (r+ ) -1

4 nf't n gt (jui+1 -u1 l/(b - a))v j CAr,s ,tgtV~EA i=i(r)+i

2 i(r+*)-i
ft g' t lUi+ - Uil
b - a i=i(r)+i

Hence,

Vr( r,Ess) = I (GJ(yj ' [Yi" 1 ))]

r ~ a rp rYs r YCs(Xay p ) 6 " r,sU~r,s

4n f't.n g't" (1+9ng't) i(r+l)-I

b - a Z Iui+1-uiI
i=i(r)+l

Thus, combining the above results,

V (1J,KtOIxG 2 ) 5 Vr(OKt~al"xQ )

t n-1 ji-i
- m *n Z IV -Vi + 4mg't'nf't i -u

j=0 ==0

-. 1
b -a t

where

I 4nf (mg, + n gt (I + 2n gt)) •d I  + 4mf, • d2,

where by BV, 3 dl1t'd2, t > 0 constants with

m-i n-i
Z juj.-u I < d 1 ~ and Z IV- I < d2
i=O j=o0 J+1-vj ,t

Remarks

1. If f = const. and g is arbitrary, then Vr(dKt) 0 for

all t > 0 . In particular g may not be of BV although clearly

here G is BV for Theorem 11.

2. However, if f even has one discontinuity at, say, x witho
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jump f(xo+) > f(xo ) , say, and is such that there exist

constants a < b such that for all a S x : b

f(x0 +) Z g(y) ; f(xo)

and g is not of BV , over [a,b] , then d is not of BV

3. Theorem 11 may be extended from two one-dimensional arguments
for G to any number, where

d [f I(xi1)-a f n(x )-al
G(x, .... x n )  max(0,min 11 b - a'' b -aJ

for all x1 ,...,x E R Thus here

Vr(G,[-t,t]n) _ n,t /(b-a) , for fn,t < +0

4. Theorem 11 and its extension mentioned above may be modified to

yield being of strong BV , when in the assumptions of the
theorem, all dependency on t is omitted.

Theorem 12 (Sufficiency for BV of cartesian product).

Let Oa be any n-copula with probability mixture

representation for c.d.f.'s H G Gj 1

• = z (bjaj)Hj(uI ..... un)+ Z (a jbji)*Gj(uj...,un)@&U .. U) J=l j=1 jb- u .. n

for all u2 ,...,u e [0,1] , where constants

0 =b °  : a, : b I  : a 2  s b2  : ... :5 1
o0 1 22

l (b.-a.) + Z (a.-b )
j=1 i J-i J J-i

(u I .,Un) = St(j) u , a j  Un -ajj

where ((j) is an Archimedean n-copula with p.d.f. g. bounded

over [0,1] n  by C < +O ,

du......u ) d r un b u-b
G (uI l ..... un = max(Omin 1, i bj' 'a.- bjJ)'

0
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for all u1,...,u n E [0,1J j = 1,2 ....

Suppose fl .... f n satisfy Theorem 11. Define

Cj t d  C .Vr(fl,[-t,t]) ... Vr(fn C-t,t])

and fx... xf n Rn _, [0,1 by,

(f 1X''-.Xfn)(Xl ..... xn )  9 0&(fl(Xl) ..... fn(Xn')) I

for all x..... xn e R . Then Theorems-10 and 11 yield:

Mi Vr(fl1x..xf n , [tt
n

- j,t +o:S Z r1 1 + Z ' J
j=1 (b. - n-i J-1

(ii) Thus, if also, e.g.,

0 b0 < a1 < b < a2 < b 2 <'" < an < bn = 1 , then flx1 ... xf is

BV

(iii) With obvious modifications, SBV holds for f1x .. Xfn

We will say that a copula 4, has a bounded-finite probability

mixture representation iff the conditions of Theorem 12 (ii) hold
for ,.

Theorem 13 (Basic approximation II)

Let 9& be a copula with a bounded-finite probability mixture

representation.
Let f,g : R -4 R be arbitrary, bounded and Borel measurable.

Then there exist sequences (fm)m=1,2,...' (gm)m=1 ,2 ... of BV

functions

f mg m : R - R for which for all t > 0

0 = lim f t tf(x) - fm(x) I dx = lim t I g(Y) - gm(y) I dy

M- x=-t m y=-t

and which are BV and satisfy the conditions of Theorem 12 so that
fM x gm is BV for m = 1,2,... ,and for all t > 0 1 (fm x M ) I

m = 1,2,..., converges in L -norm to f x g over [-t,t] 2
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0 = urn Jff (fxg)(x,y) - (fmXg m)(x,y) I dxdy .

n-t- x,y e [-t,t]

In particular fm and gm may be chosen as step functions;

m = 1,2,... .

Proof:

First choose fm and gm as step functions as in Theorem 3

(i), m = 1,2..... Clearly each fm and gm satisfy the hypo-
theses of Theorem II, and by Theorem 12 (i) , f x gm is BV

m = 1,2......
It also follows readily for all x,y e [-t,t] , by use of the

triangle inequality and Moynihan's Theorem (see section 2.3.6).

j(fxg)(x,y) - (fmXgm)(xy)l

:5 J@(f(x),g(y)) - (P&(fm(X),f(y))I

+ I@&(fm(X),g(Y)) - Oa(fm (x ) ,gm(y))

5 jf(x) - f(x)I + Ig(y) - gm(Y)l

whence

f 1(fxg)(x.y) - (fmxgm )(x,y)l dxdy
x,y e [-t,t]

- 2t.( ft If(x) - fm(X) I dx + ft Ig(y) - gm(y)l dy
x=-t y=-t

Theorem 14 (Helly-Bray-like theorem)

Let g : Rq R P be continuous over closed q-interval K

(i) Tiet fn R q _. R be uniformly bounded over K and uniformly

BV over K : Vr(fn ,K) s -0 < +- , for all n 1 . Then indepen-

dent of g , 3 subsequence (f n =,2 .... of (fn)n=1,2 .... and

there exists f : Rq -. R BV such that
0

(a) lim fn (x) = f0 (x) for all x e K

(b) Vr(fo0'K) S 0o

(c) m f g(x)dfn (x) = f g(x)df (x)
oxeK n e
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(ii) If (i)(a) holds for f f. 1,2.... then ()(b),(c)
n j

also hold.

Proof: See, e.g., [181'], pp. 233-234.

Theorem 15 (Basic convergence theorem)

Let K be a closed q-interval. Let f : Rq - R be BV Let

gn : R q _ R and g : R q _R n = 1,2 .... all be continuous with

lim gn(x) = go (x) , uniformly in x e K

Then

lim f gm (x)df(x) = g0 (x)df(x)
n-w xe K xEK

Proof: Standard; see, e.g., [1811], p. 232.

Remarks:

1. Theorems 14 and 15 may be extended to where gn I n = 1,2 ....

and g are finitely piecewise continuous but such that over all
regions of their discontinuities, all fn are simultaneously

continuous.

2. For the space

i(q) (f I f : R q  R  is measurable, bounded and of BV) , for each

t > 0, the L1 -norm over [-t,t]q  may be used, but clearly Theorem
3 (i) shows that it is not complete since any bounded measurable

non-By function may be L 1 ([-t,t]q ) - approximated by a sequence of

f ne (q) , n = 1,2,.....

The supremum norm furnishes an alternative norm for 9(q) (over

all Rq ) , but approximations analogous to Theorem 3 must be modi-
fied (Lusin's and Egorov's Theorems) up to sets of arbitrary small
positive measure. Theorems 14 and 15 imply that in general conver-
gence under the sup norm can only occur for uniformly bounded and
uniformly BV functions, in which case a form of completeness then
holds.

3. For the subspace %(q) (of q(q)) of all c.d.f.'s over Rq , the

L~vy metric over Rq  furnishes a genuine complete metric (and norm)
where convergence in the L~vy metric is equivalent to weak conver-
gence (i.e., pointwise over all points of continuity of the limit
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function). (See, e.g., Schweizer and Sklar (26], Chapter 4.)
Consider now the following discrete case which will be useful

in the next theorem:
Let u Z be discrete, j = 1. q , such that for

D. = {xj, t ...- 2,-1,0,1,2 .... ) with

<xj,-2 < xj,-1 < xj,0 < xj,i<

and

inf(x j,+ - x ) > 0

all j,t

q
Let f : x D. R P be arbitrary. Let

j=i 3

q
{J(x) I x e x D.)i-i J

be a semi-closed-open partitioning of Rq such that for all

1 rxx l = jx1 1 q + d xl, + Il q

e x D X = x D
q,t q J=1 [xq, q lj  j=1

q q
J(x) = Xx xj) (x) = x [xjtI xj 1 ) = J(xx + )

j= , 'j=1

In turn, define fQ , the step function imbedding of f into RR q ,

q
where for any y e ,R

q  let J(x) E C be unique such that

y E J(x)

Then

f (y) = f(x)

It follows that for any g : Rq R P such that f is contin-

uous at all x g D D q
J=1

f qy(y)dfa(y) = Z g(x).d (faJ(x))
(y xED q

Z D g(x) 4q (f,J(x))xE D
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f. being BV . Also, f. is SBV with

Vr(f) = z [d (qf,j(x))j iff that series converges.
xr D

Theorem 15' (Fundamental approximation of Lebesgue-Stieltjes measure
and integration)

(i) Let g : Rq  R be continuous.

Let f : Rq _ R be bounded, measurable and BV Thus,
w.l.o.g. f = f - f2 with fl' f2 both g.d.f.'s and hence both

are continuous over Rq  except on at most a countable subset, say,

G of R
0

For each integer n t 1 , define

D = {-n + k/2 n  k = 0,1,2,...,n.2n + ) c [-n,n]

with mesh 1/2n Thus, for any n ) 1 , Dn+ 1  refines Dn

Also, define B n (Dn )q = D x ...xD n [-n,n]q and note that Bn+1Aodein B n n n
refines Bn I for all n 1 . For each n Z 1 , let a n  be the

associated semi-closed-open partitioning of C-n,n]q Hence 1

refines a over both [-(n+l),n+l] q and hence [-n,n]q
n

Then define for each n Z 1 ,

I (flBn)C over [-n,n]q
d n

f
n (

0 over [-n,nlq

It then follows that for any t > 0 , (see also Theorem 2)

(a) (fn)n=-,2 .' f pointwise over [-t't] q

except possibly over G ,

L I
(b) (f f over [-t,t]

(c) Vr(f n -t'tlq) = Z I' q ((f I B n), (x))l

n

:5Vr(f,[-t,t] q )

< +
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for all n at

Hence by Theorem 14, for any t > 0

(d) f g(x)df(x) = lrm f g(x)df n(x)

xe[-tt]
q  n-- xe[t,t]

q

= lim Z g(x). (f,Y(x))
n-.c xED q

n

(ii) Result (i) can be extended w.l.o.g. by slight changes in the
constrution of the fn 's so that g may be considered continuous

except on a finite number of points or piecewise continuous, etc.

Theorem 16 (BV measure reduced to copula measure)

Let f : Rq - R be a c.d.f. with one dimensional marginal
c.d.f.'s f1 ...,f q R -+ R which by Sklar's Theorem (section

2.3.6) yields

f(x1I ... x q) = f(fC(x ). . .fq(X q)) I

for all xI,..., q e R and some n-copula 4&

Let g : Rq -* R be measurable.

Recall the quasi-inverse f. (see also Appendix, 2.3.6)J
defined by

fx) inf f I(x,1] ; x E [0,1]

for j = 1,2..... Then

f g(xI  ..... Xn)df(x I  ..... xn )

xl,...,x n  E R

= g(x I  ..... Xn)d 6&(fIX1x ),..... fn (xn))

Xl,... ,X n  e R
= I g~f

S(n .... un)

uI  ..... un  e [0,1]

Proof: See Schweizer and Sklar [266], section 6.5.

Marainal functions

Recalling the previous definition of C-marginal

*1
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f : Rcard(C)_ R for any given f : Rq _ R and 0 * C 9 (1,...,q} ,

suppose first that f is PM This condition is not sufficient
for all marginals to be also PM For example,
h(x,y) = f(x) + g(y) is PM since 4 2 (h,k) 0 , for all

2-intervals K , for any choice of f,g i - R
However, the following holds

Theorem 17

Let f : Rq # R be given.

(i) If f is a PM g.d.f. which is bounded - equivalently f is
also SBV and thus f(+1q ) < +- is the supremum of f , then for

all 0 * C 9 {1,...,q) , C-marginal fc : Rcard(C) _ R +  exists and

is a g.d.f.

(ii) If f is g.d.f. with minimal decomposition

f = (f)+ - (f)-

such that (f)+ , (f) and hence f are all SBV and hence all
bounded, then for all 0 * C 9 (1,. ..,q} , C-marginal fC exists,

although in general

f (f)+ - (f)c

and f is a g.d.f. which is also SOV . The result may be modi-

fied, if f being SBV is replaced by BV and bounded.

Proof: Use hereditary properties of groundedness, right continuity

and, by Lemma 1, PM

Remark:

Theorems 7 and 17 (ii) imply that if f : Rq - R is SBV , for

all 0 * C 9 (1,...,q) , C is a generalized distribution function

which is SBV, for f equivalent to f
It is of some interest to relate measures M induced by the

marginals of f and marginal measures (to be defined) of p
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2.4 Cateqory and topos theory viep°int of generalized set theory.

2.4.1 Introduction.

A logical basis for fuzzy set theory may be established using
[0,12 - valued logic and its semantic evaluations as presented in
previous sections 2.3.2 and 2.3.3.

An alternative approach, entails the imbedding of Zadeh's min-
max fuzzy set theory (9 0o) into a special category theory structure

called a topos, so that formal language and set theory investiga-
tions may be carried out. (See Johnstone (127], MacLane [166], and
Lawvere (152].) In the i.llowing discussion [0,1] is replaced by
the more general structure of a complete Heyting algebra H (See,
e.g., Ponasse (204]). Nothing is gained by restricting H = [0,1]
and analysis is eased by use of cie more general structure. Goguen
[96] using six axioms abstracting pr, perties from Fuz(H) - Zadeh's
fuzzy set theory w tth [0,1] replaced by H , the objects of -ate-
gory Fuz(H) being fuzzy set membership functions and the arrows
fuzzified functional transforms between objects - showed that any
category satisfying them necessarily must be the category Gcg(H) ,
where the object collection Ob(Gog(H)) consists of all possible
pairs (X,4 A) , where A is any fuzzy subset of X and the

morphism or arrow collection Ar(Gog(H)) consists of

Ar(Gog(H)) = oe ( (H))
over all ((X'A)'(Y)

Ar((XPA) (y 
,B)) (Gog)(H))

(f I f : X -* Y and 4 B(f(x)) CA(W, all x E X)

The motivation for the last definition cones from the extension
principle applied to Zadeh's fuzzy set system (1 - -), min, max)
i.e., for any

f : X - Y

and fuzzy subset A of X , for all x e X , it follows that- fL%
all x E X

f(A)(f(x)) Z A(x)

See subsection 2.4.2 (D) for further letails for Gog(H)
Chapin [32], (33], Weidner [270] and Novak [195] considered the

membership operator e and fuzzy set-like extensions connected with
it. All of these and Albert [2], as well, have pproached fuzzy set
theory through an axiom system with deductive rules. For example,
Chapin uses 14 axioms, but one difficulty with his system - unlike
Goguen's [96] , mentioned above - is the possible lack of uniqueness
of the resulting model of fuzzy set theory. (See again, 2.3.4.)

Eytan [56] produced a variation Fuz(H) of Gog(H) . (Sibsection
2.4.2 discusses Eytan's formulated of Fuz(H) .) Indeed, 2arrega

[29) demonstrated easily that Fuz(H) and Gog (H) - Gog(H) oaving
all of its objects (fuzzy sets) restricted to their supports - when
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H is a complete chain (the case of course for [0,1] ), are
isomorphic.

Fuz(H) is a category where for any (X,4 A) Ob(Fuz(H)) , the

dentty arrow (under o ) in Ar ((XPA),(X4A))(Fuz(H)) is id(xA)

where

id(X, A) = IA ) A A (.  ) A OX"''' : X xX -. [0,1]

(For Gog(H) , composition of arrows is the same as ordinary com-
position of functions and the iderItity ar.ows are the same as the
ordinary identity functions over sets.)

Eytan [56] also claimed that Fuz(H) was a topos. However,
Cariega [29], Ponasse [204] and Pitts (203] all pointed out the
incorrectness of Eytan's results. (H necessarily must be a Boolean
algetra which is not the case for [0,1].) Indeed, Carrega specifi-
cally showed that Fuz(H) was a p~eudotopos, i.e., possessed all of
the re-uired basic properties to be a topos, except 'hat it has no
subobje-t classifier ([127], pp. 23,24). Also, Pitts (203] claims
that Hica(H) is a better candidate than Fuz(H) for developing a
"fuzzy" set .heory, since Higg(H) is not only a category, but a
tcpos and the quotient object completion of Fuz(H) , Higg(H) (which
as shown below contains FuzkH) as a diagonal imbedding) treats si-
multaneous memoership - as opposed to Fuz(H) treatinj single
memberships, although Fuz(H) is extendable to non-interactive
multiple membership functions by repeating the 1& (here,min)

operation:

qA(Xl .... x) - #&( A(xl) . (x )) all x. .... xn e X

Mire tie-ins with multiple point coverage functions of random sets
will be treated later. (See subsection 2.4.2 for further details
concerning Higg(H).)

Since min is the maximal t-norm, a more general class of
Higg's objects is obtained by replacing min by C& in the above

definitions. In a sense, ea-h Higg object f is a kind of equality
over X x X .

If (X,(pA) e Ob(Fuz(H)) is arbitrary, then clearly

(X, id (X,.pA) )  e Ob(Higg(H)) ,

Conversely, if (X,f) e Ob(Higg(H))

(X,D(f)) E Ob(Fuz(H)) ,

where D(f) is the diagonal part of f

D(f)(x) = f(x,x)

-for all x e X
See Fourmann and Scott [59] for bas-c properties of Higg(H)

which is shown to be the Grothendieck topos of all sheaves ovir H
Furthermore (see [59] and [56]) Higg(H) can be used to realize
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general formal higher order many-sorted languagesthrough a form of
intuitionistic logic yielding sound and complete semantics. (See
also subsection 2.3.3.)

In a second (unpublished) paper, Eytan (57), whose earlier work
was to a large degree based on Coste's construction [41] being a
topos, extended Fuz(H) by weakening the single-valued condition
for the arrows of Fuz(H)

2.4.2 Basic concepts

A. Basic fuzzy set catecory Fuz(H) (Eytan [56].)

SET = (Ob(SET), Ar(SET)) is the category of all well-formed
ordinary sets with Ob(SET) , the object part, being the collection
of all well-formed sets and Ar(SET) the collection of all arrows
for SET - in this case

Ar(SET) = U ArX Y (SET)

X,Y E Ob(SET)
dyXd

Arx'y(SET) =(f I f : X Y)

for all X, Y e Ob(SET)
We use similar notation for any category C (Ob(C),Ar(C))

Ar(C) = U Arxly(0)

X,Y e Ob(C)

For any fixed complete Heyting algebra H and X E Ob(SET)
define

Obx(Fuz(H) ( {(X,q) I q X - H)

= {(X,q) I q Hx)

the class of all H-valued membership functions on X , and in turn

Ob(Fuz(H)) = U Obx(Fuz(H))

X e Ob(SET)

is the class of all H-valued membership functions.

Note that for any X e Ob(SET):

(1) Obx(Fuz(H)) 2 X d {(X,q) I e7 (0,11 ) , the class of all

ordinary set membership functions on X , i.e., membership functions
of X

(2) The operations A , v, =, C over H may all be used to define

operations on Ob x(Fuz(H)) , where, for any q1 ,12 .... e HXoperation

0
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d(X,q 1 ) A (X,'7 2 ) = (X,(7 1  A 12))

(X,q 1 ) v (X.7 2 ) (X,(q 1 v 172))

(X,q 1 ) = (X,q 2 ) = (X,(q 7 q 2 ))

C(X,'7 1 ) _ (X,(cq 1 ))

where for all x e X ,

(11A 9 2 )(X) d r71 (x) A q 2 (x)

1 v q 2 )(x) - q 1 (x) v q 2 (x)

(ql * q2 ) ( x 
- q$(x) * q2(W

(Cql)(x) C(q1 (x)) , etc.

Furthermore, because of commutativity and associativity of A

and v , we can define similarly unambiguously recursively

(X,qI)A(X,q 2 ) A ... (XqAq72A''-)

(X,q 1 )v(X,7 2 ) v ... (Xqlvq 2v..) , etc.

(3) Also, we can define the cartesian products and cartesian sums

for any X e Ob(SET) , q HX  , j = 1,2.....

(Xlq)xA(X2,q2)xA ... (XIx X ... , qIXAq2x A***
(XI71 ) tv(X2#r/2 )  +v'''. = (XIxX 2 x'-' 7ql'tvq2tv " '

where, for any x e X , = 1,2 ....

(q lXA 2 XA . .. )(x ,X 2  ) d (x )Aq 2 (x 2 )A...

(171 t v72 tv ... x1,X 2'.. " ) _ qI(x)vq 2 (x 2 )v...

(4) For any X e Ob(SET) and n > 1 and 17 E Hx n = HXxXx ' ' xX,

define D(q) e HX by, for all x e X , the diagonal part of q at

D(q)(x) = 7(xfx,...,x)

nand in turn, define for any (X ,q) e Ob n(Fuz(H))

D(Xn,,) d (X,D(q)) e Obx(Fuz(H))

D
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Thus, for any n > 1 and q 1 , 2 ..... qn e HX

D((X,q I)x x A (X, n))

= (X,f7A... A17n)

D((X' I)tv''..t v(Xqn))

= (X,qlv... v n)

(5) It follows readily that

(i) For any X e Ob(SET) and any A ..... An E (K) , with

x (A ) d (X,oA ) I

where 0B denotes the membership function for B e 9(X) , i.e.

I iff x e BB(x )  = 0 iff x 4 B ,

for all x e X , and any B; j = 1,...,n , then

(X"A )A' 'A(X, A " A= (X A A...AA

n 1 n @1
1 n

(XA 1  )v(X,4 = (XOA U ... UA
1n 1 n

C(XA 1 1 = (XC4A 3 = (XI-q A1 = (X,4 CA

(ii) Similarly for any X e Ob(SET) and A e9(X

J = 1,...n ,

(X' 1A )xA.. XA(Xn'A (Xx.. XXn'A Ix''.. xA

(X 1A )tV'''tv(Xn,4A ) = (Xx... XXnA t ... tA
1n 1 n

(6) If H has additional structure, other operations in addition
to the ones above may be defined over Fuz(H) which in a natural
way extend ordinary set operations. In particular,
if H = [0,1] , we can let 0& : H x H - H be any t-norm, with

Por : H x H - H any t-conorm, and nt H -. H be any negation -

or even more generally, c& could be any conjunction operator and

Por any disjunction operator.

(7) One approach to a relation on Ob(Fuz(H)) which extends ordi-
nary subset inclusion is to define for any X E Ob(SET) any
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6H X

({X,q ) c H (M-7 2 ) )

iff

17 G Sub(X,q 2 )

iff

-71 q 2 pointwise over X , i.e.,

q 1 (x) <H J72 (x) ; for all x Q H

Thus, for any A1,A2 G 9(X)

(X"AI) r-H(XA 2) iff A 1 ! A 2

Define Ar(Fuz(H)) as follows.
For any (X,,q) , (X2 ,q2) e Ob(Fuz(H)) , let

Ar(X 1 , q1 ),(X 2,q 2 ) (Fuz(H))

d {g I g : X1xX 2 - J &

(Fl) (g(' . ) S l ( .) A q 2 (-.)

(F2) v g(- ,x 2 ) = '1 ( ) &
x 2ex2x2X2

(F3) g(.,-.) A g(.,...) S ...

where we use the Kronecker delta notation

8 f 1, if x= y
x,y 0 ,if x y

and alternatively, axy (X) is used to indicate that x and y

are restricted to be in space X .

It follows from (F2) and (F3) for any

g e Ar(Xlql),(X2q2)(Fuz(H)) , there exists a unique

hg : (X 1 4 J1 (0)) - X2 , such that for all x1 G X1 -4 q1 (0) , i.e.,

q (x1) > 0

V g(xl,x 2 ) = g(xlhg(x1 )) = 71 (x1 )
x 2 EX2
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and for all x 2 G X2

g(xl,x 2 ) = eh5(xl),X, l71(X)

But (Fl) implies that at x2 = hg(X1) 

g(x1 ,hg(x1 )) = I" {x ) :1q {x ) A21 h q x ))

whence

q (x ) 1 :5 2 (hg9(x 1))•

for all x G X q-1(0)4

This thus implies trivially that for all xE X1 A (0) and

all x 2 E X

g(xl,x 2) = 6 hg(X ),X2
^ qA(xI) A '2(x2)

On the other hand, if q1 (X ) = 0 , then (F2) and (F3)

imply that for all x2 G Xe2
0 = g(xl,x 2 )

Hence, if we (arbitrarily) extend

hg : X 1 0 X2 ,

it follows that, for all x 1 X, I x2 E X2

g(x1,x2 ) = 
8 hg(X),X2 A i71(x1 ) A q 2 (x2 )

Note also that it follows that for all x1 e X1
q1(X1) : 172(hg(x1))

Conversely, if h X. X2  is arbitrary, define

•( h , . = h ( .) , -. .^7 1 ( -) A) 7 2 ( ..)

Then it follows (see Eytan [56], p. 59, Proposition 3.3.1)
that

g(h) Ar (x I11 1),(X 2 , 12)(Fuz(H))

iff
171(x ) 1 : q 2 (h (x l ) 1

for all x I e X I

Hence, in summary:

Ar (xI 71),(X2,12)(Fuz(H))

{8 h(.) ..A 1, A q 2 (A ) f h : X 1 -+ X 2 & 171 s 72(h(.)))
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h(.), .. 7 ( ) I h : X1- X2  & 71( )  S 72(h(.)))

Ar(Fuz(H)) g u Ar (X17)(27)(Fuz(H))

X1,X 
2

e Ob(SET)

B. A connection between Ar(Fuz(H)) and extension maps.

Let 0a be any fixed t-norm, such as (& = A and Por be any
t-conorm such as 4or = v Then define the extension or lifting

operator

# : Ar(SET) - Ar(Ob(Fuz(H)))

where for any X., X 2 6 Ob(SET) , and any h 1 -* X 2,

#(h) : Obx (Fuz(H)) -# Obx 2(Fuz(H))

X_1
by, for any qe H

(#(h))(XIIJ71) (X20,#(h)(t7 ))

where, #(h)(q 1 ) e HX2 is given by, for any x2 E X2

(((h))(q1))(x2 P xor 1  (q1 (x)) e H

X1 e h-(x 2 )

This implies

(i) If x 2 4 rng(h) , h-1 (x 2)= 0 and

((#(h))(t 1))(x 2 )  = 0

(ii) For all x1 e X1

q1 (xI) S ((#(h))(q l))(h(x 1 ))

(iii) For any c e H , xI e X 1 I

(#(h))( xl,.A C) A Ch(XI),..A c

(iv) Thus, using (ili) in the definition, for any x2  2 ,

1))(x2) = or (5h(x ), x A q1 (x1 ))

x E X 1
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= Or ((#(h))(8Xl,'A 1(x1)))(x2)

i.e.

(#(h))(q1 ) = or ((#(h))(8x A 11(x

x 1 EX 1 el

(pointwise)

a h(-),., A 01(-

Hence, if

(X2,q 2) =#(h)((X,q1 ))

then

J71(x1 ) ' q2 (h(xl)) ; all x, e X 1

and

1 2 ( ) a 8 h(. 7 () e Ar(Xi ql(X2,q 2)(Fuz(H)) ,etc.

C. General compositions of binary mappinas.

Let & and or be any fixed t-norm and t-conorm.

Let X, I X 2 ' X 3 e Ob(SET) be arbitrary with f : X 1 XX 2 " H

and g : X 2 X K3 - H also arbitrary. Then define composition or

relational product mapping gof : X1 x X3 -. H by, for all

x 1 X, x 3 e X 3 #

(gof)(xlX 3) = or (P&(f(xl'x 2 )" g(x2 'x3 ))
x2X

In particular, note that if h X2 - X3
f(','') = j7(..) and g(..,...)

then

(gof)(.,...) =#

etc.
It follows that, if a is distributive over 'or ' then o

is associative, as is the case for (A,V) or (A,bndsum). In any
case, for any X 1 , X 2 and any f : X1 x X2 -. H , letting

X1I X 2
0 1 e H , 172 c H be arbitrary such that

f(.,..) : 71 (-) A 2 (..) (we can always choose qj (. )  = 12(.. )  = 1)

0
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then q A 5 (X1 ) X x XI - H and q2 ( . . ) A 8 (X 2 )

X2 x X2 - H act as (nonunique) local identity maps relative to

i.e.,

fO[q(") A ,. .7(X) ] = f

J7 ('') A 8. (X2  j °f = f

In particular, define composition e for Ar(Fuz(H)) as above
using A and v It follows that o is indeed associative and

for all f Ar (Xq)(Xq)(Fuz(H)) , 1(.) A (X1) and

2( ) A . (X2 ) act as simultaneous local identity arrows.
It follows that Fuz(H) = (Ob(Fuz(H)),Ar(Fuz(H)) is a cate-

gory. Note that explicitly, if f e Ar(Xi,01 ) ,(X2,72) (Fuz(H)) and

g E Ar(X2,q2 ) , (X q3) (Fuz(H)) , then since

f = hf(. ),.. .A 1(.)

for some hf :X 1 -0 X 2 ; q1 (.) : q 2 (hf(.)) , and

g = 8 h (..),...A 72 (..)
g

for some h : 2 ) X 2 0(hg(.)) , then for all x1 E X 1 ,x3 e X 3 h

(gof)(Xl,X3)= V hf(X)'X2A AS1(X) A 'hg(x2),x A q 2 (x 2 ))
E 2 X2  f 1 g ~3

8 hg(hf(XI)),x 3 A q1 (xI) A 2(hf(Xl))

= h (h f (xI)),x 3 
^ 71 (x ) I

since

q I(. r7 2(hf(. )) ,

and hence as a check,

gof e Ar(XI'ql , (X3,73) (Fuz(H))

We summarize some of the basic properties of Fuz(H)
For any (Xi,01 ) E Ob(Fuz(H)) , i = 1,2.....
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Cartesian products: x (Xl.q 1 ) ( x Xq 1 (')A7 2 ('" )''" ).
1=1,2 .... .1=1,2 ....

Power class and subobject class (up to isomorphisms):

)= ((X 1 ,) re Sub(Xl,q1 ))

where

Sub(X,,q1 ) = (V j (X1,V) e Ob(Fuz(H)) and r < qI(pt-wise )

For any f,g e Ar(xVq?).(X2, 2)(Fuz(H))

Equalizer: *X ~ (xl, v (f(.,y)Ag(.,y)))(Xl,q 1 ) , (X2,q2) yeX 2

Monic: f is a monic Iff

f(x',y) A f(x",y) = 8(x',x") A f(x',y)

for all xlx" e X 1 , y ' X2

Epi: f is an epi Iff

q2 (y) = v f(x,y) all y X X2

Initial object: Fuz(H) (0,0)

Terminal object(s): TFuz(H) = ({x),T H )

where (x) is any singleton set and as usual TH  is the maximal

element under sH of H (See, e.g., Eytan [57].)

Pullbacks: Let f e Ar (X, ) (Zq)(Fuz(H)) ,

g e Ar(yq),(Ze) (Fuz(H)) Then the following commuta-

tive diagram holds

proj (yq)
(Y,,7)S(w,K) , (Y,q)

proj(C) 9
Po(XVr) I I

(X,v) (ze)
f

where pullback C = (X,V) x (Y,q) , and W = X x Y
f,g
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2(,.) V ( f(.,z) Ag(..,z)),

Z eZ

with e.g., first projection determined by

proW (. ,..,x) A ?(-) A ?(x) A (-) A

for all x e X , where a is the Kronecker delta function.

D. Go<uent's category Goqc(H).

Independently, Goguen developed category theory connections
with Fuzzy sets [961.

Specifically,

Gog(H) = (Ob(Gog(H)), Ar(Gog(H)),

where

Ob(Gog(H)) - Ob(Fuz(H))

and it follows immediately from the above results that, for any
(X1, 1q1 I (X2 ,q2 ) e Ob(Gog(H))

Ar (Xl1l),(X2,q2)(Gog(H))

= {h I h X1 -4 X2  & q1 (.) S 72(h(.)))

may be identified with Ar (X,ql),(x2q2 )(FUZ(H)) , where composition

here is ordinary functional composition and identity maps
id(xq) = idX , i.e., ordinary identity maps. In addition, for any

(X,q) e Ob(Gog(H)) , the class of all category subobjects denoted

6(X,q) , analogous to ordinary power class and fuzzy class nota-
tions, Is Isomorphic to

((X',,7) 1 X, 5 X & r l S r7 pointwise over X')

Thus, order &H for H induces an order over g(X,q)

Consider next the following 6 properties which any given
category C = (Ob(C),Ar(C)) may or may not satisfy:

(Gi) c has initial and terminal objects called C and T ,

respectively

(G2) C has associative images, i.e., for A1 ,A 2 ,A 3 e Ob(c) , and

f e ArA 2  ArAA3(C)

g(f(A1 )) (gof)(A1 )

___________________________________________________I
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where image f(A1) is defined to be the smallest - through func-

tional composition - subobject relative to f and A1 I etc.

(G3) C is disjointly a complete distributive lattice. That is:

for each A e Ob(C) , ?(A) , the class of all subobjects of A , is
a complete distributive lattice ordered according to subobject
orderings, i.e., composition with v defined here as a least upper
bound operator and A as a greatest lower bound one. In addition,

noting 0c,T C e (A) , for any BC e 7(A) , if B * C and B,C

are atoms, i.e., for any D e j(A) , if 0 C : D 6 B , either D = ze

or D = B , and similarly for C , and noting also that

CB d v (x I x e 5(A) & x A B = 0 ;(A) and similarly CC e (A)

then CB v CC = TC

(G4) For any 7 -E(A) , I. e ArAJ A (C) , J e J , J any index

set, where if i,j C J , i s j , then A i A A. = C I the(A) 3

disjoint union v Te 9 (A) and the latter may be considered
j e JJ

also as the coproduct of all Injections P from A. into A

j e J Conversely, any coproduct (or cartesian sum) of injections
in C may be considered a disjoint union of the injections.

(G5) C has an atomic-monic, generator P which is projective,
i.e., P e Ob(c) is such that

(i) For any A e Ob(C) , ArP,A(C) is a (nonempty for A * 0)

collection of monomorphisms, such that for any 7 e 9(A) , with
S4E ArP,A(C) , r is atomic.

(ii) For any A,B e Ob(C) and f * g, f,g e ArA,B(C) , there is

m s ArP,A(C) such that for * goem

(iII) For each A,B e Ob(C) and any f e Ar A,B(C) , and

m e ArPB(C) ,there is an m' Q ArPA(C) such that

for, = m •

(G6) For any P e Ob(C) , P + P , the co-product of P with itself
is not isomorphic to P

Theorem (Goguen [96), Carrega [29].)

For any completely distributive lattice H and hence for any
Heyting algebra H , Gog(H) satisfies properties (GI) - (G6). In
conjunction with this, Gog(H) is a pseudotopos, i.e., it satisfies
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properties (i) - (iv) (but not in general necessarily (v)) for the
definition of a topos in Appendix 1 (9)(xiii).

(a) The initial object 0 for Gog(H) is given by,
Gog(H)

0= (,o)

Gog(H)

which has the basic property that for any (Y,q) e Ob(Gog(H))

ar0 Gog(H)(y,)(Gog(H)) = (f(y,q))

where fY07 : 0 - Y is symbolicly defined.

(b) The terminal object T for Gog(H) is given by
Gog(H)

T = ((x),TH)

Gog(H)

where x e X e Ob(SET) is arbitrary fixed; all T Gog(H )  are

isomorphic; and for any (Y,N) e Ob(Gog(H))

Ar (Gog(H)) = (f(yq)},
(Y,q),TGog(H)

where here for all y e Y

f () = x
Y,q

(c) Gog(H) has all products existing, where for any
(Xj,7j) E Ob(Gog(H)) , j E J , J any index set,

x (Xj,7 ) is isomorphic to ( x X., A (. ))
jEi J jEJ jcJ J

(d) Let (Xj,qj) e Ob(Gog(H)) , j e J . Thus, w.l.o.g.

(X j,qj) i (X,q) for X = x Xi , 9 = v7 i pointwise. Then the
jeJ jeJ

category definitions for unions and intersections of (X.,rj) , j E J

in terms of least upper bounds and greatest lower bounds for the

order induced on 5(X,q) coincides with the Zadehian definitions

U (Xj,'7) = ( U x., vH 79
J j J j G J j eJ

n (x,,'7j) = ( n xi, AH 7)
JEJ jEJ jej

Similarly for C(X,7) = (X,CH7) complementation. U,17,C all have

the usual properties.
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(e) An atomic projective generator P for Gog(H) is given by
(up to isomorphic uniqueness) for any x e X e Ob(SET)

P ((xLO) -t

(f) For any (X1 ,l) , (X2 ,q2 ) E Gog(h) and any

f,g e Ar(xI,1I (X2,72)(Gog(H))

an equalizer of (f,g) is:

idx3 G Ar(X3, 7 3) ,(XIq )(Gog(H))

where

X 3 = {x I x E x 1 a f(x) = g(x))

'73 = 07lI X 3 )

(g) For any (XI71 ) , (X2 ,q 2 ) e Ob(Gog(H)) , the exponential

object

( X 1 1' 7 1 ) d X I(X2 ,72 ) = (X2  ,712d e Ob(Gog(H))

where for any f : X I X 2 ,

12-(f) 9 VH(t I t E H & q1 (x) AHt S 172 (f(x)) , for all x E X I

and associated evaluation

ev e Ar (Xl,7 )X(X 2,2)(Xl"1),(X 2,2) (Gog(H))

= Ar X (Gog(H))

(X 2  ,1712 ),(X 2 ,q 2 )

given by, for any f : X 1 I X2 and x s X2

ev(f,x) - f(x)

Theorem (Goguen [96])

Let C be any category satisfying properties (Gl) - (G6)
Then, up to isomorphism, there exist a unique completely distribu-
tive lattice H such that Gog(H) and C are equivalent in the
sense that there is a functor F : C - Gog(H) such that for all
A,B e Ob(C) , (FIArA,B(C)) is isomorphic to ArF(A),F(B)(Gog)(H)

and for any (X,q) e Ob(Gog(H)) , there exists C e Ob(C) such that
F(C) is isomorphic to (X,q)

Stout [249') has pointed out that (Gi) (G2.) (G4) (and (G6) in
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a trivial-like sense) hold for all topoi, whereas (G3) and (G5), in
general, do not.

Another property of Gog(H) that is desirable is the
determination of pullbacks. It follows by using the property of
pullbacks for Fuz(H) in 2.4.2 (C) and the representation of Gog(H)
in Fuz(H) (via its arrows) in 2.4.2 (F)(2), that we have the
following:

For any f e Ar(xr),(Z,)(Gog(H))

g c Ar(y,R),(,MG)(Gog(H)) , the following commutative diagram

holds

proj (Yq)

C = (W,) (Y,)

proj (X ) ) I I
(XII) e (z, )

f

where pullback C = (X,?) x (Y,q)
f,g

where

W X x y

i(x,y) = ?(x) Aq(y) A 0(f(x)) A 8(f(x),g(y))

for 11 x G X , y e Y , and

.(C

ProJ(X,) = projx!W)

In particular, if g e Sub(Z,9) , we may write (from 2.4.2 (D))
w.l.o.g.

Y Z, g = idZ, q : 9

and define

Sub(f) : Sub(Z,G) - Sub(X,r)

by, for all x e X ,

Sub(f)(g)(x) d K(!,f(X))
- '(x) A q (f(x)) A 0 (f(x))
- '(X) A q (f(x))

F. Hics's topos Higq.H___

Higgs developed a category connected with sheaf theory [59].
First define

Hiug(H) = (Ob'Higg(H)) , Ar(Higg(H)))
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where: for any X e Ob(SET) ,

Obx (Higg(H))

= {(X,O) 1 e : X x X -. H &

(Hi) a is symmetric,

(H2) 909 . 9

i.e.,

G(x,y)) A 9(y,z) : e(x,z), all x,y,z e X)

Thus, by setting x = z and using symmetry, it follows that
for all (X,9) e Obx(Higg(H))

(1) e(.,..) - (D(G)(.) A ~ ) . )

(ii) (X,D(9)) e Obx(FUz(H))

where we recall the diagonalization D(e) of 9 is

D(0)(x) d 9(x,x) , for all x e X .

Also, for any (X,9 1 ),(X2,92) Ob(Higg)

Ar (X,eI ) ( 9 2)(Higg)

I If I f : X Ix X - H &

(H3) foe I f , 0 2of < f

i.e., t 91 (xjxj) A f(x1 ,x2) < f(x{,x 2)

f(x1 ,x2 ) A 9 2 (x 2 ,x ) < f(x 1 ,xI )

for all x1 ,xi C X 1 , x 2 ,x e X 2 , &

(H4) fTof S a 2 ,

i.e.,

f(x 1 ,x 2 ) A f(xl,x ) < 02 (x 2 ,x)

for all x e X1, x2 , X e &

(H5) v f(. ,x2) = D(81 )(-)
x 2 E X2

(H6) f(. ,. ) < D(9 1 ) (-) A D(O 2 )("•)).

Composition of arrows for Higg(H) is the same as introduced
earlier for f : X 1 x X 2 - H , g : X2 x X3 - H , etc. The identity 0
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arrow under composition is, for any (Xe) e Higg(H)
Id Me 9 : X x X -+ H.

id :Xx,.H

Theorem (Fourmann and Scott [59], [226']).

Higg(H) is a Grothendieck topos equivalent to the category of
sheaves over H , with subobject classifier a being

a g (HiH), 1H : Hx H - H , IH(X,y) a 1H

We can write symbolically (see Johnstone [127], pp. 8 - 12)

Higg(H) = Sho(SETHop ) I

where Sh = TL is the associated sheaf functor and SETH p  is the
category of all presheaves:

First, Identify Heyting algebra H as a category where Ob(H)
= H and for any h I , h2 e H ,

Ar hlh2(H) 9 0 , if hI >H h 22 1 (h1 h 2 )  , If hl I sH h 2

where = H is the implication operator for H (see section

2.3.3 (C)(3)).

Then

SET H op  = (Ob(SET ) , Ar(SET H°))

where

Ob(SET p ) = {F I F : H - SET is a contravariant functor)

and for all F,G e Ob(SETH op )

ArF,G(SET ) = {g g : F -. G is a natural transform)

Theorem (Pitts (203])

For any (Xj, e) e Ob(Higg), j = 1,2, ... and

f e Ar (X ,9e 1 ),(X2,02 ) (Higg(H))

p
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(a) f is a monomorphism iff fof T s a I

(b) f is an epimorphism iff v f(x1 ,.) = D(O2H. )
X 6 X1

(c) f is an isomorphism iff f is a mono and epi.

The subobjects, terminal objects. initial objects, etc., for
Higg(H) are completely analagous to those for Fuz(H), (See also
Eytan [57] for a listing of various properties of Fuz (H) (see the

next subsection F) which in turn can be directly translated in
terms of Higg(H).)

Now consider Higg's category and two point coverage functions
(see Chapter 5). This is a special case of the problem, given any
f : 7 n( - [0,1 ,

where

S(X) = (A I A 9 X & card(A) S n)

for some fixed integer n , to determine which, if any, random
subsets S of X are such that their n point coverage functions
match f , that is, for all A e n(X)

f(A) = Pr(A a S)

Clearly, when n = 1 , we have the well investigated one point
coverage problem for fuzzy sets. When n = 2 and
f e Ob(Higg([O,l])) (letting once more H = [0,1] from now on),
this reduces to the two point coverage problem for Higg objects.

Clearly, for any random subset S of X and any x,y e X

(1)

max(Pr(xeS)+Pr(yeS)-l,O) S Pr({x,y) S S) S min(Pr(xeS),Pr(yeS))

noting that upper and lower bounds also coincide with the maximal
and minimal copulas possible with respect to the possibility
function Pr(.eS) evaluated at x and y . (See also section
2.3.6 on t-norms, t-conorms for similar bounds and Chapter 6.)

First, let us remark that in general it is not true there
exists

f : [0,1] x [0,1] -4 [0,1]

such that for given random subset S of X , for all x,y e X

(2) Pr((x,y) 9 S) = f(Pr(x e S) , Pr(y e S)) ,

unlike the analogde in Sklar's theorem for probability distribution
functions [226]: Reconsider the above relations in terms of zero-
one random variables representing whether a point is, or is not,
covered by S and show for two distinct sets {x,y} , {x',y} S X

Pr(x e S) = Pr(x' e S) , Pr(y e S) = Pr(y' e S)
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~but

Pr ((x ,y ) r S ) 0 Pr ( {x ',y ) S S ).)

However, for certain random subsets, this is not only true, but f

is also a t-norm. For random sets of the form S(A; &) where here

A = A , a single fuzzy subset of X , for any n Z 1 and

X1 , .... xn E X ,

Pr({x .... x)

= @&(Pr(xi e S(A;1&),...,pr(xn E S(A; &),&

= @a( A(x1),-.., A(Xn))

(Special cases of this random set, include Su(A) = [U,1] , for

= min and T(A) , for i& = prod. See Chapter 6.)

Because of eq. (1) , eq. (2) may have no solution in S
depending on choice of f For example, if we choose the Higg's
object (X,f) , where D(f) is arbitrary over diag(XxX) , but such
that there are at least two distinct points xoy 0 e Y such that

f(xoY o ) + f(yoyo) - 1 > f(xoY o ) Z 0 ,

then eq. (2) has no solution. Or, if X is discrete, let

f(x,y) = f > 0 if x= y

S= 0 iff x # y

such that

(3) Z f(x,x) > I
x e X

Thus, if an S satisfies eq.(2), then for any x * y

0 = Pr((x,y) a S) ,

which implies S = {V) , V a random variable over X , but letting
x = y arbitrary in eq. (2), eq. (3) yields a contradiction.

The following positive result does obtain:

1. Given any space X and a random subset S of X , there is a
copula ,& such that

(4) (P&(f(x,y),f(y,z)) :s f(x,z) ,

for all x,y,z e X , where for all x,y 6 X

f(x,y) = Pr({x,y) 9 S)
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2. Given any space X and (P = min , a solution class of f's

satisfying (4) is given by

f = OA( - ) A A('),

for all fuzzy subsets A of X . Note that since min is the
maximal t-norm, any solution of (3) for , = min, i.e., any Higg's

object (X,f) (assuming f symmetric) must also satisfy eq. (3)
for (P but not conversely.

3. Given any space X and P& , any strict Archimedean t-norm

[140] (such as prod) then the solution class of all f's satisfying
eq.(3) is

{f I f = h-od , d is any pseudometric over X)

where a is ordinary function composition and

&(x,y) = h-1 (h(x) + h(y)) ,

h : [0,1] , R+  h(O) = +- , h(1) = 0 , h decreasing, is the

canonical representation of &. (See 2.3.6.)

Finally, it should be noted that Cerrvti [30] has investigated
the category of fuzzy set relations.

For some set theory connections involving Higg(H) , see
subsection G of this section.

Next, we will consider several important relations between
Fuz(H) , a class of modifications of Fuz(H) , Fuz×(H) , and

Higg(H) as well as some connections with Gog(H)

For more general constructions of nich Gog(H) , Fuz(H)
Fuzx(H) and Higg(H) are special cases, see Apendix 3, at the end

of 2.4.

F. Relations between the basic categories.

We present a list of relevant results connecting Gog(H)
Fuz(H) , modifications of Fuz(H) and Higg(H) . Some of these
results are motivated by the desire to determine which of the above
categories are topoi - topoi being in a sense kinds of generalized
sets. (See also the discussion in (G) following this subsection.)
In the following, H is some fixed Heyting algebra.

(1) Fuz(H) is the type II B6nabou extension III(SET,H) of the

deduction category (SET,H) with the proviso: as developed in
the formal language in section 2.2.2 is to be replaced formally by
ordinary equality (via the Kronecker delta function. This shows up
in the construction in constraint (F3) , Appendix 3, section 2.4.2.

0
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(See also Remark 3 of the Appendix.)

(2) Carrega (29] showed that for any complete chain H (and H is
thus a Heyting algebra), Fuz(H) and Gog(H) are isomorphic under
the isomorphism functor F Gog(H) - Fuz(H) , where for any (X,O)
(Y,?) E Ob(Gog(H)) and for any f E Ar(XQ),(yM)(Gog(H))

F((X,0)) 4 M G)

F(f) : X x Y -+ H is such that, for all x e X , y e Y

F(f)(x,y) 9 8 (Y) A O(X) A ?(y)
f(x),y

It follows from Appendix 3 (at the end of 2.4.2), (ii) and
Remark 3, Case (4), that for H , a general Heyting algebra, and F
as above

F : Gog(H) - Fuz(H)

is a (non-faithful, in general) functor.
In addition, Stout [249'] has indicated differences in struc-

ture between Ar(Gog(H)) and Ar(Fuz(H)) through the fact that for
any (X,q) E Ob(Fuz(H)) = Ob(Gog(H)) and any singleton {x)

Ar ((x),O),(X, )(Gog(H))

= (f I f :{x) - X and qof 2 0}

= x{x)

but by (Fl)

Ar((x),O),(X,7 )(Fuz(H)) = (f0 )

where

f : {x) x X - H ; f = 0

(3) It should be noted (see Appendix 3 (iv), Remark 3) that Gog(H)

is a type-I Benabou extension of the deduction category (SET,H")
again as in (1), with interpreted as ordinary equality. Thus

Gog(H) =I(SET,H

(4) Next, let us modify Eytan's original Fuz(H) [56] to
Fuz(H) , where in the type II Benabou construction in (1) - and in

particular in (F3) - , - is retained. See, e.g., Appendix 3 (iv)
and section 2.3.3 (C), Godel-intuitionistic logic, for the proce-
dure for generating the intuitionistic Kr6necker delta e. from any

object (X,O) in Higg(H) ; in turn e. defines a corresponding -

over (X,G) . Similarly, we can modify Gog(H) to be Gog.(H)

(5) Thus, it follows from Appendix 3 (Theorem 2) that
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FX: Gog ,H) Fuz 1H) where F . is the same as F in (2) but

with 8 replaced by a suitable ee s , is a faithful factor.

(6) Eytan claimed in [56] that Fuz(H) was indeed a topos, because

(mistakenly) of Theorem 2, Appendix 3. But since (SET,H') , in
effect, due to X being forced to be ordinary equality and hence
not in general compatible with the Th sK(Z) (see 2.2.2), is not

synK

a formal topos, III(SET,H) need not be a topos. In conjunction

with this problem, the following results are pertinant:

(i) Carrega [29) showed that Gog(H) is a pseudo topos (again,
see subsection D). In addition, if H is a complete chain (with at
least three elements), then Gog(H), and hence by (2) above, Fuz(H)
have no subobject classifier. (See Appendix 1, end of section
2.4.3, for pertinent definitions.) Thus, in this case, Gog(H)
and Fuz(H) are not topoi.

(ii) Ponasse [204] and Pitts (203], in effect, showed that:
Fuz(H) is a topos iff H is a Boolean algebra, in which case
Fuz(H) is equivalent to Higg(H)

Note that H = (0,1) is a (trivial) Boolean algebra and as a
check, indeed Fuz((0,1)) may be identified with the topos SET
There is a great potential for applying the last mentioned theorem
to set-valued (or interval-valued) logics, i.e., logics in which
truth values are actually sets of numbers. (See the interesting
work of Shoesmith and Smiley [234'].)

Pitts [203] concluded from this analysis that Higg(H) , not
Fuz(H) , is the appropriate vehicle to "fuzzify" SET , noting that
Higg objects simultaneously fuzzify membership and a kind of
equality.

(iii) More directly, and apropos to the previous comments, if
(C,%) is a formal topos then (Appendix 3, Theorem 2) (C,%)

must be a topos. In particular, for (SET,H) (see comment (4)

above) it must follow that (SET,H) when is interpreted as
ordinary equality (=) , in general, is not a formal topos. Indeed
we can show, through a simple counterexample to deduction rule
R I,Th,24 (2.2.2) that this Is so:

Choose any X,Y E Ob(SET) , e H , y E Y , x E X

s,t E 9(X)Y , 0 < ll9(y)I < IixEs(y)l < lix e t(y) 1 Then the
hypothesis of RI,Th,24 will hold:

I ll(y)II A IIxEs(y)II S lixet(y)1I

114(y)I A 11xEt(y)l S IIXeS(y)i

But the conclusion

Sc(y)n t as(y) s ti(y)

is contradicted since
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0 = 1s (y) -t (y)II < If c (Y)II

On the other hand, not any choice of will work, since for
being interpreted as being derived from e. 1 0 6 Ob(Higg)

by choosing 0 = , we know e. =6 , which in turn yields

interpreted as ordinary equality. However, if we choose
0 : H x H -# H to be of the form e(X,y) =q(x) A 17(y) , for all
x,y e H , then, e a will Indeed generate so that all axioms and

rules of Th sy 'K are valid and (SET,H) is indeed a f ormal

topos, as is seen by inspection. In turn, this choice for (SET,H

yields I II(SET,H )=Fuz.(H) as a topos by Theorem 2, Appendix 3.

(iv) Pitts (203] also related Fuz(H) with Higg(H) in the fol-
lowing way:

Define the categories

Hig nt (H) 9 Higsbos (H) 9 Higg(H)

where

Higg cnt(H) 21 Ob(HIgg cnt(H)) , Ar(Higg cnt(H)))

Ob(Higg const (H)) El {(X,6(XxX) I X e Ob(SET)}

noting 8(X) is the ordinary Kronecker delta function over X

Ar(Higg const(H)) U U rHg(,(x))(,(x)()
x'y

eOb(SET)

Ob(Higg subconst (H)) = {(X,O) IX e Ob(SET) , 0 e Sub(X,8(XxX),

i.e., 9 :Xx X -. H with

G(X,y) s a8l (Xxx))

Ar(Higg subconst (H)) = U r(9)YY(HgH)

(X,0 ) ,(Y, )1
e Ob(Higg subconst(H) )]

Define also the mapping

G :Fuz(H) -+ Higg(H)

where, for all X e Ob(SET), 7 H HX

G((~r7) 9(X,G(iq))
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G(r7) 6 .) (X X X) A 17(- ),

and for any (X,17) ,(Y,C) e Ob(Fuz(H)) , and any
f e Ar (Xq),(Y,) (Fuz(H)),

Note G(q) e Sub(X,8(XxX)) . Conversely, if
f e Ar(')('(XX)Hg() is a monic, i.e.,

f e Sub(X,8(XxX)) , for some (Y,G) e Ob(Higg(H)) ,then also f is
an isomorphism from (Y,G) to G(X,r) , where Mr,) e Ob(Fuz(H))
and where

V f(y,.)

G is a full and faithful functor imbedding Fuz(H) into the
subcategory Higg subconst (H) of Higg(H).

Furthermore, consider the mapping D :Higg(H) -. Fuz(H) , where
for any f e Ar(HIgg(H)) , D(f) = f and for any (X,G) eOb(Higg(H))

D((X,9)) =(X,D(s)) e Ob(Fuz(H))

D (a) 51 8(.-) : X -4 H.

Then the following diagram holds:

For any (X,G) e Ob(Higg(H))

G(D(X,G)) a p
e O(Hggsubconst ()

I G(D(X,G)) ,a mono

(X,8(X x X))
G Ob(Higgconst (H))

Thus, (X,e) Is a quotient object of G(D(X,O)) ,which in turn
is the domain of a subobject of (X,8(XxX)) . Hence, Higg(H) is
the quotient object completion of the subcategory HigsbcntH

which may be identified with Fuz(H).

(v) We can establish two additional interesting connections
between Fuz(H) , and more generally Fuz,(H) , and Higg(H)

First choose any function

g : Ob(SET) -# Rel(SET,H)

where for any X e Ob(SET)
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g(X) e HXxX d- Rel XXX (SET,H).

Let (X,g(X)), (Y,g(Y)) e Ob(HIgg(H)) and consider any f e
Ar(~~),Yg~) Hg() . Then noting g S eg9 (see Appendix 3

(iv) at the end of 2.4.2), CR4) implies (F3) with right upper
bound eg . Also (H4) , CH5) Imply (Fl) holds with right upper

bound the same as in Higg(H) :D(g(X)) A D(g(Y)) . (F2) and (H5)
are the same. Thus f e Ar (XD(g(X))),(YD(g(Y))) (Fuz_,H)) and

hence

(a) Ar (Xg(X)),(Y(Y)) (Higg(H))

SAr (X,D(g(X))),(Y,D(g(Y)))(Fuz.(H))
g

for all X e Ob(SET).

Secondly, choose any

f :Ob(SET) -# Rel(SET,H*

where for any X e Ob(SET),

f(X) r. H X = Rel X(SET,H-)

and in turn define

gf :Ob(SET) -+ Rel(SET,H*

where for all X e Ob(SET) , x,y e X

gf(x,y) d ef(x,y)

f(X)(X) A f(X)(y)

Then for all X e Ob(SET)

CbAr (Xf(X)),(Yf(Y)) (Fuz. (H))
gf

n r(X,gf(X) ) ,(Y,gf(Y)) (Higg(H))

= (C f(X),f(Y))

where

9 f(),()(x,y) f(X)(X) A f(Y)(y)

for all x e X , y e Y
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Proof:,

Clearly for all X e Ob(SET), (X,gf(X)) e Ob(IIII(SET,H))

In turn, replace - by -K = e and consider Fuz (H)
gf

For any f e Ar(K f(X)),(yf(y))(Faz. (H)) , (Fl) , (F2)
gf

(F3) all hold for f with right hand side upper bounds being
f(X) A f(Y) , for (FI) and e for (F3) , etc.

gf
Now form:

f(x,y) A f(x,y') f(X)(x) A f(Y)(y)
A f(X)(X) A f(Y)(y') A egf (y-y')

for all x e X , y,y' e Y
But

f(X)(x) A f(Y)(y) A f(X)(x) A f(Y)(y') A e f(y,y,)

f(X)(x) A f(Y)(y) A f(Y)(y')
f(Y)(y) A f(Y)(y')

= gf(Y)(y,y')

Hence (H4) holds:

f(x,y) A f(x,y') S gf(Y)(y,y')

for all x e X, y,y' e Y

In addition, since D(gf) f , (F2) and (H5) are the same

with this use.
All that remains is (H3) , which becomes here, for all

x,x' E X , y,y' E Y ,

gf(X)(x,x') A f(x,y) = f(X)(x) A f(X)(x) A f(x,y)

S f(x',y) ?

f(x,y) A gf(Y)(y,y') = f(x,y) A f(Y)(y) A f(Y)(y') S f(x,y') ?

Equivalently,

Sf(X)(x') A f(x,y) S f(x',y) ?

f(x,y) A f(Y)(y') S f(x,y') ?

Taking supremums over x in the bottom inequality and using

(F2) implies

f(X)(x) A f(Y)(y') S f(x,y')

But by (Fl)

f(x,y') S f(X)(x) A f(Y)(y')

Hence, we must have for all x e X , y' E Y 0
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f(X)(x) A f(Y)(yI) =f(x,y,)

f(x,y) = cf(x)lf(Y)(XY)

Combining (a) and (b) , noting gf is a particular g 1 we

obtain for all X e Ob(SET)

(c) {Cf~xlf(y)} = Ar(Xgf())(y,gf(y)) (Higg(H))

Sr(X f(X)) (Ylf(Y))U)C H)
gf

Thus, we can consider the basic mapping

a:Higg(H) -. Fuz(H)

where

Fuz(H) = U Fuz(H( ver all] 9
such gJ

so that for all (X,?), (Y,G) e Ob(Higg(H)) and
f e Ar ,(YGIM) (Higg(H))

a ="F (X, D (?)
Q(f) f e A (')Qy9(Fuz.(H))

and hence in a sense C may be considered a functor.
We can also define

Higg(H) U Higg (H)
all g g

where Higg 9(H) Is like Higg(H) except that Higg 9(H) is

restricted to objects generated by g and arrows are likewise
developed. It follows, that for any choice of g there is a
mapping

a, Higg(H) - Fuz(H)

where for any g as before

01 Higg 9(H) -. Fuz , etc.

Eytan's [571 claimed that Fuz.jH) and Higg(H) are

equivalent under the mapping D , but this does not appear so.

(vi) Stout (24911 has shown a natural relation directly between
Gog(H) and Higg(H) via the level sets functor #. (See also
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Chapters 5 and 6 for related results, where level set mappings are

used to connect fuzzy sets, random sets and/or flou sets.):

Hop
Gog(H) -* SET

where for all (X,q) e Ob(Gog(H))

$(X,q) - q-'Ch,T H ]

- {x x E X and q(x) 2 h)

and for any h I , h 2  H , h1 s h 2 , and henc. Arrow ((h1 1 h 2 )

h1 -h 2 ) of H,

$(X,q(h 1 h 2 ) i(X,)(h2) $(X,.)(h2  (X,Jq)(h 1 )

and hence s(X,q) E SET . Also, for any

f eAr (Gog(H)) , define the natural transform

11(f) : *(Xl,q l ) s (X2,7 2 ) ,

by, for all h e H ,

$(f)(h) : #(X11171)(h) - -#(X 2 '-72)(h) 'O

an ordinary function (e Ar(SET)) , where for all k e $(Xlz7 1 )(h)

O(f)(h)(k) -9 f(k) e #(X2,q2 )(h)

since

172 (f(k)) q I(k) - h

etc.
$ preserves limits and monics and the composition and

extension (see also 2.4.2 (E)) functor

F d Sho$ : Gog(H) - Higg(H)

preserves all finite limits and colimits (and hence is "exact") as
well as all monics, but nct in general epis and is hence not a
faithful functor. In addition, it has a right adjoint (see [249'1,
Prop. 3).

Next, let us reconsider the functor in subsection 2.4.2 (F)(2)

F 1 : Gog(H) -* Fuz(H)

where we add the subscript 1 for notational purposes and we do not
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assume necessarily that H is a complete chain. Also, reconsider
from subsection 2.4.2 (F) (6) (iv), the faithful functor

G 0: Fuz(H) -# Higg(H) ,

with added notational subscript o
In summary, FO , F1  and G all preserve finite limits and

colimits and all monos, but in general, Fo  and F1 are not

faithful, while G is. As Stout concludes, in any case, this0

implies that all three functors do preserve all power class and
hence subobjects, G0  being of course injective.

Extending Goguen's observations [96] (see also 2.4.2 (D),
IG4)) , Stout points out the basic idea that for any category C
with all limits and colimits (finite) existing, for any
A,B,C e Ob(C) and (f : B - A), (g : C -* A) e i(A) , the intersec-

tion and union of f and g can be defined as equalizer (1B,C,f,g)

and similarly for coequalizer of f and g
Let (X,q) e Ob(Fuz(H)) = Ob(Gog(H))

Thus, for Gog(H) , and any (X1,'71 ) , (X2 , 172) e i(X,7)

i.e., X1 ,  X2  5 X , q1, 72 : 7 ,

(Xi,7 1 ) U (X2,72 ) = (X1 U X 2, ' 1 v q 2 )

where q1 v 72 = '71 or '72 for appropriate values not in
xI  U x 2  '

(X 1,q1 ) n (X2,"72 ) = (XI  n x2 ' 7i A 1 2 )

For Fuz(H) , and any (X,1l7) , (X2,',) C (X,q) , i.e.,

X = 2 x = X , 71,72 : A7

the same formal definitions hold.
Similar properties hold for Higg(H. But in addition, as a

topos, noting that for any (X,?) E Ob(Higg(H))

is bijective, where f = (H,TH) is the subobject classifier for

Higg(H) , all set-like operations on subobjects of Higg(H) can be
natur ily defined in terms of membership functions in
Q(X-F) = {f I f e Ar(X,),n (Higg(H))) where analagous to the situ-

ation for general logical systems (see 2.3.5), we can define for iiny

(X,A) E 5(XP),A E Sub (XF) ,

(X,A) = X, X x H - H
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where for all x e X , h e H ,

(X,A)(x,h) d 1 
1  iff 3 y e X with h = A(X,y)

1 0 iff otherwise

In turn, we can then consider basic arrows acting like & , or
if( ) , nt (abusing notation)

& or ' V , if() = =  E Arx,,,(Higg(H))
and

nt = r e ArR,,(Higg(H))

and then compose these appropriately. For example, for any (X,?,),

(X,'F2 ) E (x,?) ,

(X,)i' 1 ) U (XA"F2) 1)? A 4 '(X' 2)

etc.
It follows that F0 , F and G all preserve unions and

intersections as well as all natural orders relative to H .
Stout further defines implication and negation intuitionisti-

cally (see again 2.3.3 (C) (3)) for Gog(H) and Fuz(H) and remarks
that the usual Zadeh fuzzy negation ' nt = 1 - (-) can be obtained

in the compatible (adjoint) Intuitionistic form

nt (h) = (hO) , 0

with ,(a,b) j or (l-ab) 'or = (min)bndsum and & = xbndsum.

In addition, Stout establishes a formal language and a basic
semantic evaluation for each of Gog(H) , Fuz(H) , and Higg(H) ,
analogous to the development in 2.3.2 and Appendix 2 for deduction
categories (C,%) where % = Sub . It follows that F , FI and

Go 0all preserve semantic evaluations. Finally, Stout establishes

sufficient conditions on Heyting algebra maps f : H - H' so that
the naturally induced functors Ff Gog(H) - Gog(H')

Ff, 2 : Fuz(H) - Fuz(H) , and Ff, 3  Higg(H) - Higg(H') preserve

certain logical properties. For example (Theorem 9 [249']), if f
preserves A , v , TH , then Ff , a = 1,2,3 , all preserve

universal quantification of implications of wff's composed of com-
pounds of atomic formula, A , V , 3 , T H  

1 H . i.e., geometric

statements. Ff, can be defined as

Ff,i(X,q) (X, foq) ,

for all (X,q) e Ob(Gog(H)) , and for any g E Ar(Gog(H))

0
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Ff,1 (g) 4 fog .

G. Some ccnnections between set theory and topos theory

As mentioned previously, one of the motivations for considering
topoi is the set-7ike structure they have. That is, as shown in 2.2
and 2.3, the set foundations part Foun(L) of a class of formal
languages L car be semantically modeled - as indeed all of L -
within an appropriate topos. Moreover, there is always a canonical
model and canonical formal topos, and by the B~nabou constructions,
a topos, in which Foun(t) can be evaluated compatibly.

We present here a summary of the development in Johnstone
[127], Chapter 9 which directly connects various set theory models
and topos theory models - or equivalently topoi, themselves.

First, recall the notation and results of section 2.3.4.
Define a weakened form of Zermelo-Fraenkel set theory (ZF) as

Ax z (Z) 4 ((Zl), (Z2), (Z7), (Zll), (Z12), (Z13), (Z14),

(Z15), (Z16),(Z17))

which can be shown to be essentially equivalent to
((Zl), (Z2), (Z4), (Z77), (Z18))

Define the somewhat stronger

Ax zer(L) - Axze r (t) U (Z19,Z20)

by Also, define wpt = Thwpt(() , the theory of well-pointed topoi
by

Ax wpt(L) d Axtopos U (wellpt)

where it should be noted via the identification of (C,Sub) with
C , when C is a topos, that Axtopos  can then be chosen as AxK

(together with AxsynK for required syntax) in 2.2. The axiom of

well-pointedness "wellpt" is given in [127], p. 314, in concrete
form, which may be abstracted in a straightforward manner.

In addition, consider the topos-like axioms PT , "partial
transitivity" and TR, an axiom connected with transitivity. (See
[127], pp. 303-315.)

Define then the axiom systems

Axwtt(L) = Axwpt(L) U (PT)

Axwtr (L) = Axwpt(L) U (TR)

Axwttr (L) = Axwpt(L) U (PT,TR)

In turn, we consider the set theories Thzer (L) , Thzer(')

p010o
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ThzF(L) and the topos theories Thtopos(L) , Thwpt(L) Thwtt(L)

Thwtr (L) , Thwttr(L)

Note that if C is a category and U 1 - L C C (i.e.,
(CSub)) is a model for Th(L) ! Thzer (L) , then necessarily C

0

must be at least a topos.
For a model i I! : L - (C,Sub) of Th(L) with C a topos, we

will write

II 1I : Th(Z) C

Two topoi constructed from I II are of importance here:

S(it if) -- C

where construction S is given in Johnstone [127], p. 315, and
where

f (U i) d it H (Var(L)) = Var(IC1) Q C

Then abusing notation somewhat

(i) If II II : Thze r  (L) -* C , then
0

Y(II U) : Thwpt(L) -4 Y(Il II)

(ii) If I ! : Th zer(L) 0 C , then indeed

Y(II 11) : Thzer (Z) - C and hence

Thwpt (L) Y (Il 11

but in addition,
Y (11 if) : Th wttr (L) T(II 1)

(iii) Conversely to (i) and (Ii):
If Ii 11 . Th wpt(L) - C , then

S(II ii) : Thze r (L) - S(II I)

and in turn from (ii)
Y (S(II 11)) : Th wttr (L) Y (S (1I 1f)

and if also II II : Thwtr (t) - C , then it can be shown that

Y(S(I 11)) is equivalent to the subcategory of all partially
transitive objects of C (see [127], p. 311).

(iv) An improvement to (ii) , using (iii):
If II II : Thzer(L) C , then from (ii)

?(II ) : Thwttr (L) Y (II I)

and hence
X(I 11) : Th wp t ( L) Y(11 II)

which in turn from (III) implies 0
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SY(1 1)) : Th zeiL) _' S(?(11 11)) ,

but in addition, it can be shown that S(?(II 11)) is isomorphic to
U II

(v) Note that if
II II : Thwttr(t) ( C

then
II Th wpt() -# C , and (iii) applies,

(vi) Thus, in the above cyclical construction sense: Th zer()

and Thwttr (L) are "logically" equivalent.

(vii) In a similar vein, strengthening Thzer (t) further to
ThZF(L) and Thwttr (Z) sufficiently to, say, Th wq(Z) , then

ThZF(U() and Thwq (,) are "logically" equivalent. (See (127], p.

318.)

(viii) On the other hand (as Johnstone also remarks), replac-
ing Thzer () and, in effect, weakening) by ThK(L) , as given in

section 2.2.2, yields the result that (omitting the necessary syntax
theory and choosing for the range of semantic evaluations (C,Sub),
C a topos - see 2.3.2) ThK(L) and ThTopos(L) are "logically"

equivalent.

(ix) Note that Higg(H) is a well-pointed topos. (Apply
Freyd's theorem to: any terminal object in Higg(H)) , ((a),TH) I

(a) any singleton set, is a generator - see Johnstone (127], p. 314
and Appendix 1, 9 (xii); see also a similar prcperty for the non-
topos Gog(H) in subsection (D).) Hence, by result (iii), a model
(using the S construction) can be constructed from Higg(H) for
Thzer(t)

(x) For applications of topos theory to the investigation of
consistency, independence, and other set foundations problems, again
see (127]. See also Mitchell's interesting exposition [179].
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Appendix 1

Basic category and tovos definitions

1. For any category C = (Ob(C), Ar(c))

Ar(C) = U Ar a.(C) = class of all arrows for C

a ,,SeOb(e)

Ar a .A(C) = class of all arrows from a to p for C

a,j3 e Ob(C) ,

Ob(C) - class of all objects

S,B :Ar -* Ob,

where for any f e Ar aA(C) ,a,3 4Ob(,C)

S(f) -a (source or domain of f)

B(f) A (end or codomain of f)

D(C) ((f,g) If,g 4 Ar(C) & S(f) =B(g)),
G Ar(C) x Ar(C)

E(C) { (f,g) f,g e Ar(e) a S(f) = S(g))7,

9. Ar(C) x Ar(C),

Id Ob(C) -* Ar(C) , identity map,

0 D(C) -4 Ar(e) , composition,

where for all (f,g), (g,h) e D(C) , a e Ob(C)

Id(a) a Ar , (C)

Sold = IdeB = id
S(fog) =S(g) , B(fog) = f)
(fog)oh =fo (goh) .

2. In addition, category C may have

x :Ob (C) x Ob (C ) -o Ob (C )

a finite cartesian product operator

<>:E(C) -. Ar(C)

ordered pair operator,

proj, Ob(C) x Ob(C) -. Ar(C)

pro J2  Ob(C) x Ob(C) -. Ar(C) , projections,

satisfying, for all f,g c Ar(C) *a,p e Ob(C)

S(<f,g>) - S(f) = 5(g)
B(<f,g>) =B(f) x B(g)
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S(proj (a,A)) - S(proj 2 (a,A)) a X /

B(proj (aE M) = CL

B(proj) 2(a,A) = Ap

proj I(B(f),B(g)) o <f,g> = f

proJ2 (B(f),B(g)) o <f,g> =g

If Bf =a x A3 , then

<proj 1(a,A)ef , pro j2(a,/3)of> =f

3. Category SET-

SET = (Ob(SET), Ar(SET))

Ob(SET) =class of all ordinary sets

Ar(SET) U Ar(SET)
xly xY

e~b( SET)

Ar Xy (SET) = Y X d{f f X -. Y In ordinary sense)

for all X,Y 4 SET

Id = Id,

I.e., for all X e Ob(SET)

Id(X = id(X: X -# X

where for all x e X

id(X)(x) - x.

0:D(SET) -* Ar(SET)

is such that for all (f,g) e D(SET)

fog f composed with g In ordinary sense.

Clearly SET has x , ordinary cartesian product, and proj1
proj 2 # ordinary projections.

4. Categories Preord,

Let S :Ob(SET) -. Ob(SET) be a fixed mapping such that for
any X Q Ob(SET) & X X x X Is a fixed preorder on X . Then

Preord = (Ob(Preord.), Ar(PreordO)

is such that
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Ob(Preord~ :5 (x,s X) IX e Ob(SET))

Ar(Preord:,) U Ar(X, ,Y~ ( Prerd.
xly (X )(ror5

40b( SET)

Ar (X,sX),(y,SY)y (Preord.) - (f I f :X -# Y and for all Elx X

if xi :S x 2 , then f(x I) S y f(x2))

= class of all preorder-preserving

functions 9 Yx

oIs usual functional composition,

Id = id.

5. Deduction categories..

(c,1) Is a deduction category if f C is a category with a
finite product (x) operator and M C -# Preord, . for some f ixed

choice of S , is a contravariant functor, i.e., for any
a,A ,7 e Ob(C) ,and any f e Ar ,,(C) , g e Ar, (C)

~(a), (p%, ti) -6 Ob(Preord5,)

%(f) 6Ar()~ (Preard:,),

and noting fog e Ar, 1(C).

%(fog) = %(g)o%(f) E Ar%(7),%(a)(Preord:S)

It follows from part (4) that for all x1,x 2 4 %(,Y:) such that

xl 5S%(1) X2 .then

6. Let C be any category with not only a finite product operator,
but with all finite limits existing. Then (C,Sub) is a deduction
category, where

Sub :C -* Preord5,Su

is the subobject functor and ISu is chosen as follows

Let a e Ob(C) be arbitrary. Let f,g e Ar(C) also be any
two monics, i.e., for any f1 1f 2 P91 'g2 G Ar(C) with

B(f1 ) =B(f2 ) = 5(f) ,S(f 1 ) = S(f 2 )

B(gj) = B(9 2 ) = S(g) ,S(g 1 ) = S(9 2 ) , if

fof 1= fof 2 , then fl = f
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and if

g09 1 = gag2 , then g1 = 9

Suppose also B(f) = B(g) =a .Define f S3ub(a)g 'f

f = gah , for some (monic) h e Ar(C) (B(h) = S(g), S(h) = 3(f))
and define

1ff

f 5Sub(a) g and g ISba f.

Then it follows that for each a e Ob(C) Sub;a generates an

equivalence relation among the class of all monics with codomain a,
partially ordered by S Su~)*Call this class the class of sub-

objects of a ,denoted (Sub(a) , :5Sub ) ,and the resulting

order is & Sub
For any a,/i e Ob(C) , let f e Ar,' (C) be arbitrary and

(g f - C) E Sub (A) arbitrary (7e Ob(C)) Then obtain pullback

7 x a, where, in the following diagram all maps commute under
g, f

compositions (well-defined) e Ob(C), projections projM e Ar (C)I~ ,'a
are all unique such that for any q7 e Ob(c) with s e Ar rl.(C)I

t e Ar 7,(C) such that gos =fat ,there is a unique r e Ar C(e)

making all maps commute:

177

projE f

t

Then define the monic

d (ia
Sub(f)(g) = proj a

identifying the equivalence class under Sub(a) with

proj e Sub(a)
a
Also note that If (h :8 -+ 0) e Sub(pO) is also arbitrary such

that g :5Sub(A) h , then g - hok , for some (kc:~ .8 and

similarly,

Sub(f)(h) -proj~ relative to Sba
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Since

proj proj o (kXid,
C(, p

It follows that

Sub(f)(g) &Sub(a)Sub(f)(h)

and hence

Sub(f) 4 Arsub( ),Sub( )(Preordsub)

and hence Sub : C -# Preord Sub is a contravariant functor and thus

(C,Sub) is a deduction category.

7. The deduction category (SET.Sub) .

First note the following construction and commutative diagram
for any (non-vacuous) X,Y 4 Ob(SET) and any f e Arxly(SET)

i.e., f G YX in the ordinary sense:

Define

rng(f) 4 (f(x) I XG X) 9 Y

with

frng : X -# rng(f) , (surjective)

Sub(Y)(rng(f)) : rng(f) -# Y , (identity)

given by, for all x 6 X and all y E rng(f)

f (x) 9 f(x)rng

Sub(Y)(rng(f))(y) = idy(y) = y

Noting that Ff 9 {f-(x) I x e rng(f)) forms a disjoint

exhaustive partitioning of X , let gf : Ff . X be an arbitrary

choice function such that for each x e rng(f)

gf(f -(x)) G f- (x)

Then define

Xf = rng(gf)

and define
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fsur -. , (surjective)
Sub(X)(X,) :Xf - X . (identity)

f Inj :X f -. Y . (injective)

f bij :~ -. rng(f) , (bijective)

where, for all x e X and all z e 4

f surx) g (f1'(x))

Sub(X)(X f)(z) Id (z W z

finj Wz) f bij (z) Id id(Z) =z

Thus,

(*) [ = Su(Y)rng(f) ) rn

f i--Sub(Y)(rng(f)) =faSbX(f

bbij

Sub(Y) equalent totemnf)u()(n~)

ariray su that

(*) ffgfh

Since, anargoulotha bvedvromn

g Su=)rn~) Su()rgf)

Sub(Y)(rng(f)) = fo Sub(Y)(rng)g))fa k

SubY)- quialntto hemocSub(Y)(rng(

gc = S e h a S(X)) * bijn
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Hence, for (SET,Sub) , the preorder reation for Preord must
be S - 9 , i.e., ordinary subset Inclusion, and for all
X e Ob(SET) , we may take equivalently

Sub(X) =

In addition, in SET for any X,Y,Z e Ob(SET) with
f : X Y , g : Z - Y , the pullback

C Z x X -{(z,x) I z G Z , x e X , and f(x) = g(z))
g,f

-1 f-1
=- g (rng(f)nrng(g)) x f (rng(f) n rng(g)) 9 Z x X

and proj , proji become ordinary X- , Z - projection,

respectively over C
Hence, for any X,Y 4 Ob(SET) and any W E Sub(Y) , i.e., we

can let W e 9(Y) , and identify further W with the Identity
imbedding

d
90 = Sub(Y)(W) W -+ Y

Sub(f)(W) - Sub(f)(Sub(Y)(W))

- projiW , relative to a

where now

C =Wx X
golf

{(w,x) I w e W , x E X and f(x) = w)

which may be Identified with the inverse mapping f- W 9. (X)
Hence, we can let

Sub(f)(W) = f- 1 (W)

and check the contravariance:
For any V C 9X) W ,i.e.,

V 9 W S X , V , W X e Ob(SET)

Sub(f)(V) = f- (V) 9 Sub(f)(W) = f- (W)

etc.
In summary, (SET,Sub) is equivalent to Sub: SET - Preord

where

Ob(Preord, = ((9(X),X) X e Ob(SET))

Ar(Preord) = U Ar(,(X) ()((y)()(Preord )
a Ob(SET)]
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kr (.()'eX ( ) ' y(Preord.)

91 M -iM (1MI _y(
(f1 f-1 : (Y) -# T(X) , where f X Y Y Is arbitrary)

under the usual relation composition

(fog)- ' = 3-of- , etc.,

and for all X,Y a Ob(SET) , f X -# Y

S u b ( X ) - ,%X , 1

Sub(f) - f-1 : (Y) 1 9(X)

8. The deduction category (SKT,H L.

Let H e Ob(Preord) to be specified later, with partial order

5 H "Define contravarlant functor H SET -# Preord by:

For all X e Ob(SET) (i.e., for any ordinary set X

H"(X) 2 Hx - {f I f : X -# H in the usual sense)

X XDefine the partial order & on H by if f,g e HMX

f IHX g iff f(x) SH g(x) , for all x G X .

For all X,Y e Ob(SET) and any h e Ar xy(SET) (i.e., for any

h yX or h : X -* Y , in the usual sense) , define

H'(h) : HY  - HX

by, for any f e H

H"()(f) 2 foh (ordinary composition) and note that if

f,g 6 Hy with f & g, then H(f), H"(g) E HX with

H (f) HX H (g) , since f(h(x)) &Hg(h(x)) for all x e X

Now depending on the choice of H , (SET,H) may have addi-
tional properties.

Note first that here

Rel(SET,H*) U Relx(SET,H )
XeOb(C)

where

Relx(SET,H") HX

and hence substitution here becomes, for any r e Hx - noting
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a(rX) = X , and r : X - H is an ordinary function, and for any

h : Y - X , Y 4 Ob(SET)

r[h] = H (h)(r) = roh

i.e., for all axioms and rules Involving the substitution operation
-[-.] , the latter becomes simply ordinary composition (in the same
order).

Thus, e.g., if H has structure so that H has a largest
element, say TH • H and a smallest element ± H E H , with respect

to :H - then conditions (T) (Risyn,18 , RI,Th,3 , RI,syn,19) and

(1) (RIsyn,22 , RI,Th,7 , Ri,syn,23) are immediately satisfied,

by using the mappings

T,1 : Ob(SET) - Rel(SET,H) as

T(X)(x) T H

±(X)(x) 1 H for all x e X , for all X 4 Ob(SET)

Next, we consider some structure on H , AH I to correspond to

A , although not necessarily the "and" axioms and rules given in
Lce% beoe(R , R R RRLoc(c,m) before (I,syn,20, I,syn,21' RI,Th,4, I,Th,5' RITh,6)
For example, if we choose H to have an operation correspond-

ing to A = min, then we require AH ov-r H to satisfy formally

RI,Th,4,5,6, , i.e., for all elements r,s,t • H

if r IH s , then t A r , r AH t 5 s;

if r &H s,t , then r &H s AH t

On the other hand, if we choose H to have the more general
structure of a t-norm &H " replacing AH (see the remarks in 2.2.2

VI and section 2.3.6) , then this structure will be reflected in

the mapping & Rel(SETH' n _, Rel(SET,H*) , where for example for
n = 2 , and any X e Ob(SET) , r,s X -# H relaticns in

Relx(SET,H') , &(r,s) = r & s X - H so that for all x e X

(r & s)(x) = r(x)&Hs(x)

with the t-norm properties of symmetry, associativity (so that
unambiguously & H can be recursively extended to any number of

arguments - see 2.3.6), nondecreasing, bounded above by min, and
having the marginal properties, with possibly additional properties
such as Idempotence, etc.

Similar remarks hold for or H and a t-conorm structure, as

well as for other operators such as negation, and universal and
existential quantification, as well as for equivalence and set
membership. In particular, see section 2.3.3 (C) , Gbdel-Intuition-
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istic Logic, for a brief summary of Heyting algebras (choosing in
effect H to be a Heyting algebra) and intuitionistic logic
operators over them. See also Remark 3 at the end of Appendix 3.

9. Some miscellaneous basic category concepts.

We will exploit commutative diagrams for all definitions:
Let C = (Ob(C),Ar(C)) be any category.

(i) if

f

Ida I da

i.e., a,A e Ob(C) , f e Aru ,(C) , g e Ar Aa(C)

with

gf =Id ; fog =Id

then we say f and g are inverses of each other (with either one
uniquely determined by the other) and a and p are Isomorphic
objects.

(ii) If. for some a,A e Ob(C) , f e Ara, C(C) : For all

7 Ob(C) , all f,,f 2  e Ar., ,(*.)

f 
fa- f---

f I implies fl = f2

then we say f e Ar a,(C) is a monlc (o, monomorphism).

(Iii) If, for some a,A e Ob C) f e Ar a'(C) : For all

i Ob(C) , all fl,f 2  e Ar (C)

a---. - implies f,

f 2

then we say f e Ar a0(C) is an opi (morphism)

(iv) Let a e Ob(C) . if for all A , Ob(c) , there is a unique
fAa e Ar Aa(C) , called a terminal arrow then a is called a

terminal object, in whi-h case, necessarily. faa = Id and any

two terminal objects are isomorphi, 'rten we write 1 for the
ter,,inal arrow.
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(v) Let a e Ob(C) If for all A E Ob(c) , there is a unique
E Ara, (C) , called an Initial arrow, then a is called an

initia! object, in which case, necessarily, ga,a = Ida , and any

two initial objects are isomorphic. We denote a = 0 .
Note that for SET , monos are the same as ordinary injectve

functions, epis are the same as ordinary surjective functions, iso-
morphisms are the same as bijective functions - and hence, in this
sense all sets having the same cardinality are isomorphic; any
singleton set is a terminal object, the null set is an initial
object (by definition).

(vi) Subobjects have been discussed, the definition being moti-
vated by monos. Dually, quotient objects may be defined, relative
to all epis (for a fixed category) where ordering SQuo epis f,g

with S(f) = S(g) , is

f sQuo g iff f = hog

and where =Quo g is defined by the usual relation

f =Quo g iff (f SQUO g) and (g &Quo f)

etc.
For SET , it follows that for any X E Ob(SET) , Quo(X) , the

class of all quotient objects over X , can be identified with
(Y I Y E Ob(SET) and X C Y)

(vii)(a) Finite products are defined analogous to pu.lba;ks with
the right half of the commutative diagram removed - aa ia (6), so

g
that >4 is removed, rtc.

f

Thus, for example, for two objects: Let a,p e Ob(C) Then
the product a x A e Ob(C) , if it exists, where a and A are
called its fectors and arrows proja , projA (see below) called the

projections, are such that for each i e Ob(C) and each
fEAr ,a , g e Ar ,,(C) , there is a unique k,g e Ar x(C

such that the following diagram commutes:

a

f projp
g roj A

(b) Finite coproducts: 'or example, for two objects: Let
a,4E Ob(C) Then the co-product aiL(or a t C) e C , if it
exists, where a and p are called its summands and arrows inj,

injA (see below) called Injections, are such that, for each

i Q Ob(C) , and each f e Ar a,(C) , there is a unique

hfg e AraiL j_(C) , g e Ar A (C) such that the following diagram

commutes:
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a
f ij

Note, f or SET , all products coincide with the usual cartesian
products of sets and all co-products with the usual cartesian sums
of sets.

(viii) If, for some a,p e Ob(c) , f,g e Ar a (C) For all

qEOb(C) , all k e Ar qf(C) , all t e Ar q'(C)

7 = a 0.8 fg h0 h a , f,g ap

kI T g

then we say 7 apa~fg is an equalizer for a ,pf ,g with

unique arrow ha' e Ar 1fg#a )

For SET ,and any X , Y e Ob(SET) with f,g :X -, Y

X.Y'f'g ( x I x e X and f(x) = g(x)).

(ix) Suppose category C has all finite products existing.
For some a,pC e Ob(C) If for each i G Ob(C) and each

f a Ar7xa0 A(C) , there is a unique h -ha C0 e Ar 7Ca (C) such

tht

a x7 f p

id ax h {, e
aXA ev

then we say, for that a,A e Ob(C) ,exponential A3 ae Ob(C) exists
with evaluation ev 4i Ar aaP (C)

For SET ,for all X,Y e Ob(SEt)

Y =(f f: X -#Y) and ev X xYX -#Y is such that for

all x e X , f e YX , ev(x,f) =f(x)

(x) If there is some terminal object U e Ob(C) and an object
al a Ob(C) and g0e Ar U12(C) such that for any P 6 Ob(C) and any

representative subobject (f a -+ P3) of p , there is a unique
h f 4 Ar,, such that subobject (proj A(t) -. a) and (f :a- 3

Sabre equivalent, whereC U.are ,C g o h f3
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proj O

pro j 90

Then 90 is called the true-mapping, hf the classifying or

characteristic map , n the subobJect classifier, and the power

object is n1a  (from part (ix)).
For SET , we may choose for any X e Ob(SET) , W e Sub(X)

I.e., W X ,

(1)xW 1 (1

Sub (Y) (W)jI id

Y w (0.11

That is, the subobject classifier is n = (0,1) , the

true-mapping go = Id : (1) - (0,1) , Id(1) = 1 , and the

classifying map here is hf = w : Y -. (0,1) , where iW is the

ordinary membership (or characteristic function) map.

(xi) More on subobjects of a category C

(a) C has associative images iff, by definition, for all
a,p,0 e Ob(C) , and all f e Ar,' (C) , g e Ar, (C) , there are

(unique) smallest (in sense of 9Sub(p)' 5Sub(7) )  subobjects,

written f(a) of P and g(A) of 7 such that

f :sSub(,O)fla) ,g &Sub(,,)g(A)

and such that

g(f(a) = (gof)(a)

(b) C is said to be complete distributivo lattice (c.d.l.) -
ordered, iff, by definition, for all a a C , Sub(a) under SSub

is a complete distributive lattice (c.d.l.)

(c) If C is a c.d.l., then for C all classical unions and
intersections of subobjects exist, where we define for any
a 6 Ob(C) and any p,v e Sub(a) , p U 7 , 7 n 7 e Sub(a) , as the
least upper bound, greatest lower bound for A and v relative to
SSub(a) ' respectively. In turn, the pseudo-complement f' of

e Sub(a) Is the least upper bound for the class of all
e Sub(a) with q n A = ma , where ma is the minimal element in

Sub(a) relative to &Sub(a) We say 0,- e Sub(a) are disjoint

Iff A nI - m , etc.
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(xii) An object a e Ob(C) is called monic iff for all f e Ar(C)
with S(f) - a , f is monic.

An object a • Ob(C) is called atomic-monic, iff: (i) a is
monic; (ii) for each 7 e Sub(a) , 7 is atomic, i.e., (assuming
Sub(a) is a c.d.l.) if v m (the minimal element in Sub(a)

w.r.t. SSub(a) and If q e Sub(a) is such that

SSub(a)1 SSub(a)' , then 7 = m. or q= 7 ; (iii) for any

8 Ob(C) , AraA 0 0 .

An object a 4 Ob(C) is called a generator (or separator) of
C , iff, for any A,i e Ob(C) and any f,g 4 Ar,(C) with

f * g , there is some hf,g 8 Ara,p( ) such that fohf,g * gohf,g

More generally, a set ( a I .....an) 9 Ob(C) is called a generating

(or separating) set of objects for C , iff, for all A,7 e Ob(C)
and f,g e Ar,(C) with f 0 g , there is some j , 1 J S h

and h e Ar aj,(C) such that fohj 1 goh '

An object a e Ob(C) is called proJective iff, for each
f e Ar(C) and each epi g e Ar(C) with a = S(f) and B(f) = B(g)
there is some hf,g e Ar(C) such that f = gohfg (and hence

S(hf,g) = S(f) , B(hf,g) = S(g))

a f

hfg g all A,i G Ob(c)

For SET :

For any X,Y e Ob(SET) , f • Ar Xy(SET) = YX , the image

f(X) = Sub(Y)(rng(f)) with f SSub(Y)f(X) and clearly SET has

associative images and is a c.d.l. under SSub = with unions and

intersections of any subobjects W c Sub(X) T(X) being ordinary
unions and intersections of W's ; mX = 0 ; pseudo-complement W.

of W a Sub(X) is the ordinary complement CW = X 4 W .
The monic objects of SET consist of all singleton sets (x)

x a X , X e Ob(SET), i.e., the monic objects and terminal object(s)
coincide. The atomic objects of SET are also the singleton sets,
while any nonvacuous X e Ob(SET) is a projective generator, since,
for any Y,Z e Ob(SET) and any f : X -4 Y and g : Z -, Y surjec-
tive, we can define hf,g : X -+ Z by choosing for each x e X ,

h fg(x) arbitrary fixed e g- (f(x)) . For SET , the atomic-monic
projective generators are the same as the singleton sets.

(xiii) A topos is a category for which
(a) All finite products x exist,
(b) Has a terminal object,
(c) Has equalizers for all pairs of objects in it,
(d) Has exponents and evaluation maps existing for all pairs

of objects In it,
(e) Has a subobject classifier.

I
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In a topos, an arrow is an iscrxorphism iff it is both an epi
and a mono.

(xiv) Some basic properties of functors and related concepts.
(A) Let C , I be two categories. A functor 9 : C E

consists of two maps

(i) 5 : Ob(C) -. Ob(S)

(ii) I Ar(C) - Ar(C)

such that either

(a) For all f,g e Ar(C) , a e Ob(C)

S(J(f)) = 9(S(f)) , B(5(f)) = 5(B(f))
If S(f) B(g) ,
'(fog) - 5(f) o T(g)
V(Id a)= Idg(a) I

in which case 5 is said to be a covariant functor;
or

(b) For all f,g e Ar(C) , a E Ob(C)
S(9:(f)) = 9(B(f)), B(5(f)) = 9:(S(f))
If S(f) = B(g) ,

9(fog) = 5(g) o F(f)I (Ia)= Id,(a) ,

in which case 5 is said to be a contrava,-lant functor.

(B) Let f : C o % be a functor. Then:

(1) 1 is full iff, by definition, for all a,A e Ob(c)

I(Ar. (C)) d {i(f) I f E Ar a,(C))
= Ar 5(a),91(A3) 00 )

(2) F is faitthful iff, by definition, for all
f,g G Ar(C) , if f 0 g , then 1(f) * 9(g) , i.e.,

: Ar(C) -4 Ar(z) is Injective.

(C) 5 is representative iff, by definition, for all
a 4 Ob(T) , there is some p c Ob(C) such that a is isomorphic to

(D) 5 is an equivalence between C and 0 (or C and
are equivalent w.r.t. 9) Iff, by definition, 9 is full, faithful
and representative. iff (a theorem - see, e.g., MacLane [165) , p.
91) there is a functor C : - C and natural isomorphisms between
o C -. C and Id : C - C and natural Isomorphisms between

og - 9 and Id : -0 . In particular, if, more strongly,

9o= Id. and o= Id then we say 7 is an isomorphism between

c and 2 , where natural transforms and natural isomorphisms are
defined below:

Let C , T be two categories.
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Let f,g : C # 0 be two functors. Then the mapping
r : Ob(C) -& Ar(s) such that for all a 4 Ob(c) ,
r(a) a Ars(a),9(a)(S) such that for all A e Ob(C) and all

f 4 Ara, (C) , the following diagram is commutative

5(a) (a) (

I -(f) I g(f)

91(A) r ( W

and we denote symbolically: 7 : 9 - g and call r a natural

transform from 9 to . If r : - is a natural transform
from functors f to , where 5, g : C 0 , for categories C ,
T , and if also, for each a e Ob(C) , r(a) is an isomorphism (as
previously defined), we say r is a natural Isomorphism from 9 to

Summary of isomorphism concepts

Let C , S be any categories:

(1) A given a,p e Ob(C) are isomorphic iff an isomorphism
f e Ara, (C) exists Iff there is f e AraA(C) , g e Ara(C) such

that

fog - IdP and gof = da

(2) A given f,g e Ar(C) are isomorphic iff there are isomorphisms

h,k a Ar(C) such that

hof - gok

in which case where well-defined fog is an isomorphism; Ida is
always an isomorphism, for all a e Ob(C) ; if f e Ara, (C) is an

isomorphism between a and A e Ob(C) then so is
i(t) e Arg(a),f(p)(%) , for any functor 5 : C -4 0

(3) Ltt 9,9 : C -#S be two functors. The r : 9 1 s a

natural isomorphism iff there is a a : g -4 9 , natural
transormation such that oor - Ids and roc = Id9 , iff, by

definition, I and g are isomorphic (relative to r or to a -
both a and r being natural isomorphisms).

(4) Let C and 0 be two given categories. Then

(1) C and 9 are isomorphic iff there are functors 5 : C
S g : 0 - C such that fog = IdT , gol = IdC

(ii) C and S are equivalent iff there are functors
I C -0 , g : S C such that fog is isomorphic (via a natural
Ipsmorphisms) to Id. and gof is isomorphic to IdC
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(xv) Adjoints
Let I : C- T and g : - C be two functors for catejories

c and T
Then we say 5 is left adjoin? to g and 9 is right adjoint

* *

to 9 iff, by definition; ( ) , ( ) are bijections , where

(1) For all a,a e Ob(C) , 7,q e Ob(!D) and all f E

Ar ,7 (S) , h 4 ArAa (C) , k EAr ,(.) ,

( ) (h ) ( ) f , k ,

h f (Y) (k)

* *

(fog(h)) = f oh
* *

(kof) = g(k)of

f being the right adjoint of f

(ii) Equivalently, for all a,A a Ob(C) , Y,q e Ob(%) , and all
g e Ara9(7) (C) , h e Ar,aC() , k e Ar (M)

9{) (h) , k

h a g 9 91 ) (k) _ glq)

* *

(q(k)og) = kc g

(goh) = gol(h)

Note that for any f e Ar (), (t. ) and any g E Ar, ()

as above,

(f) = f ; (g) g

= g1
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ARuendlx 2

Deduction Categories and Formal Topos Properties

Let (C,%) be a detiuction category, with the usual notaticri

C = (Ob(C),Ar(C)) ,Ar(C) = U Ar1 ij(C) , the arrow class,
i, Jeob(c)

and Ob(C) ,the object class. We assume the Initial object
0 e Ob(C)

In addition, define the %-relation (object) class

Rel(C,%) 9 U %(1) 9 Ob(Preord)

ie~b(c)

the %-relation arrow class,

ArRel(C,%) U %(f) 9 Ar(Preord,,)
faAr (C)

and the signature (object) mapping

a :Rel(e,%) -* Ob(C),

where for any r e Rel(C,%) , o~r) e Ob(C) Is that unique object
such that

r e ao(r))

In particular, note the special case (assuming C has all
finite limits and products) for (C,Sub) , and further (SET,Sub)
where Indeed any relation r is such that

r e Sub(o(r)) - 91(o(r))

i.e.,

r r. o~r)

That Is, a relation Is simply a subset of a given set. For
example, let X,Y e Ob(SET) . Thus, X x Y e Ob(SET) . Let
r 9 X x Y be arbitrary fixed (binary) relation relative to X and
Y .Thus, a(r) - X x Y here.

Note also as usual, for any i,j e Ob(C) and, say,
f e Ar1 i'(C) , %(f) c Ar %(j)%( 1 ) (Preord,,) and %-relations

r,s e 1(j) such that r S %(J), , (f)(r) s %(I) % (f)(s) ; %(f)(r)

%(f)(s) e 1(I)
Also consider the following basic results:

Cat(e,%) S,B .Ar(C) -. Ob(C),
Id :Ob(C) -. Ar(C),

Ar(C) SxBAr(C) 9 {(f,g) f,g a Ar(C) and

5(f) = B(g)) -4Ar(C)

where S is the source or domain map
B is the Codoffain (S range) map
Id is the identity association map,

0is the (binary) composit ion map,



264 Goodman and Nguyen

where for all i~j e Ob(C) f e Ar ij(C)

SMf 9 , B(f) j , Id(i) e Ar i'(C)

the identity arrow, and for any (f,g) e Ar(e) SIBAr(C)

a (f,g) = fog , arrow composition.

Basic first level syntax rules

For all i E Ob(C) , all kc e Ar(e) , all
(f,g) 4E Ar(C) SIBAr(C), (g,h) e Ar(C) SIBAr(e)

"RI,syn,l: S(Id(i)) =B(Id(i)) = i

"R1 ,syn,2: k*(Id(S(k)) = d(B(k)) ok - k

"RI,syn,3: S(fog) S(g) ,B(fog) =B(f)

" 1,sn,4: (fog)eh =fa(goh)

x Ob(C) x Ob(c) -. Ob(C) (object) product map,
<> Ar(C) )( Ar(C) = (f,g) I f,g -E Ar(C)

S's
and S(f) = S(g))

-~Ar(C) , arrow product map,

proj, , pro J2 :Ob(C) x Ob(C) -4 Ar(C) , projection map ,where for

all f,g e Ar(C) x( Ar(C) , all i,j e Ob(C)
S's

R I 8Syn 5 : S(<f,g>) = 3(f - S(g)

RI,syn,6: B(<f,g>) = x(B(f),B(g)) = B(f) x B(g)
R I~sn,7: S(projl(ixj)) - S(proj2 (ixj)) = i x j

R 1syn,8 : B(proj,(ixj)) = i, B(pro J2 (ixJ)) i

R I~sn,9: proj1(B(f),B(g)) o <f,g> = f

R1 Isyn 1O: pro J2CB(f),B(g)) o <f,g> - g

R Isyn 11: if

BMf - i x J

then

<projl(i,j) of, pro J2(iJ) o f> = f

Define also

x : Ar (C ) x Ar (C)- Ar (C)

unrestricted arrow product map, where, for all f,g e Ar(e)

f x g 9<f * proj 1 (S(f),S(g)), goproj 2(SMf)S(g))>
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Next, define:

L* Subst : Rel(e,%) x Ar(C) -4 Rel(c,1)
o,

the substitution mapping, where for any (r,f) e Rel(C,%) x Ar(C)
a ,B

recalling r E (c(r)), o(r) e Ob(C)

T(r,f) =rff

(%(f))(r) G %(S(f)) r. Rel(C,%)

=substitution of f into r

The following properties hold:
For (r,f) e Rel(C,%) x Ar(C) and all (f,g) e Ar(C) x Ar(C)

a ,B B,S

R Isn1: o(r~f]) = S(f)

RI,syn,13: (f][]=rog
R Isn1: r[Id(o(r))J - r

Also, for any r,s e Rel(c,%)

R ifI,syn, 15*
r :,

then

R1 ,Tho 0: if

(r~f),(s,f) e Rel(c,%) x Ar(C)
o,B

and if

r 5 (o(r))

then, by the order preserving property,

r 1] (a(r)) sf

In particular, note the special case % = Sub (and C having
all finite limits and products) . Furthermore, f or the case of
(SET,Sub) , we note now that for all
(r,f) G Rel(SET,Sub) x Ar(SET)

o,B
r e Sub(o(r)) - 9(o(r))

i.e.,
r 9 o(r) e Ob(SET)

r(f] = f- I(r) Q B(f) e Ob(SET)
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Also, note the terminal arrow maps

Pa :Ob(C) - Ar(e)

where for each i G Ob{C) , (p a(i))-A l hr a i n

terminal object In Ob(C) ,and hence

R Isn1: S(p a(i)) iO , B(p a(i)) b1a

and for all f G Ar(C) with B(f) 1 a

R I~yn,1: f= Arpa (S(f))

Note also that for all r,s t e Rel(C,1),

R IThil: r : (~) r (indeed, r %ar)r)

RI ,Th,2 : i
r S and S SG~) t

then
o~r) = a(s) - or(t)

and
rt

(Modus Ponens)

In addition, we may have:

Loc(e,1) T : Ob(C) -. Rel(C,1) ,truth mapping

where for all i e Ob(C) , all f e Ar(C) and all r e Rel(C,%)

R Isyn,1B: aTi) Ob i

RI~ 3  r S T(a(r))
ITh,3 (0(r))

R Isn19: T(B(f))[fJ -Ob T(S(f))

& A :Rel(C,1) x Rel(e,%) -. Rel(e,%)

conjunction mapping, where, for all r,s,t 4E Rel(C,%) ,f e Ar(C)
with a(r) a(s) - cr(t) B(f)

A (r,s) L1 r A 5

where

R I~sy,20: o(r A s) = or(r) - (d)

R (r A s)(f] = rif] A s~f]
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RITh,4 ,5  if

r

then

t Ar, A I (o(r)

RITh,6  if

then

I Ob(c) -. Rel(c,%) , false mapping where for all i e Ob(C)
all f Ar(C) ,and all r eRel(e,%)

R Isyn,22: a((I)) - i

RITh,7 * 1(0(r))

or =v: Rel(c,1) x Rel(e,1) -. Rel(C,%) , disjunction mapping,

-here, for all r,s,t 6Rel(C,%) ,f e Ar(c) with
o(r) = a(s) =a(t) = B(f)

v (r,s) 9r v s

where

RI,syn.24: o(r v 9) = a(r) = (s)

RI~sy,25: (r v s)[f) = r(f] v sff

R ITh,9,10 if

then

r 5 (a(r)) 8vtt V S

R IThB: if

r A , A A1(0(r))'

then
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r A (s v t) S(o(r) )U

(distributivity)

Rel(C,%) x Rel(C,t) -# Rel(c,%t) , Implication mapping is
0,0

defined to be such that for all r e Rel(C,%) and the mapping

id (a(r) )  A r : 1(a(r)) - %(0(r))

where for all s e %(o(r)) ,

(id Ar)(s) = 8 A r
(ta (r))

(*)(r,s) r * s

(id (y(r)) A r)*(s)

where the following diagram commutes:

[1(0(r)) id%(o(r)) Ar 1(0(r))

1(a(r)) (r.) - 1(0(r)) S(f)

%(S(f)) 1(S(f)) o(r)

We can show, for all r,s,t,u e Rel(C,%) and f e Ar(e) with
c(r) = a(s) = a(t) = o(u) = B(f) , corresponding to the diagram

RIsyn,26 : [ o(r = s) = o(r) = o(s) ,

Risyn,27 : (r = s)[f] = r[f] * s[f]

In addition, we require:

RITh,11 If

r Ss(o(r)) 5  and t u

then

(r A (S u t)) ;l(o(r))U

R I,Th,12: If

(r A S) 1(o(r))t

then

r S (a(r))(s t)
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Quan(O,%I) v : (Ob(%) x Ob(3)) x Rel(c,%) -. Rel(C,%I) univers~i
(id,o)

quantifier mapping, where for all i,j e Ob(C) ,for the rapping

%(proj 2 (i,J)) : %() - IJ

and all r e Rel(e,%) with o(r) = i x j (i.e., r e %(i xJ)

V~i~~r) ( ?roj2 (,j)) (r

where the following diagram commutes:

£%(proj 2 (ixj))

%t(ixj) v(i~j) k()I

2.(d~ix I j j2(fkj

We can show, for all i,j,k * Ob(C) , all r,s,t e Rel(C,%)
all f G Ar kj (C) , all g e Ar ixJk (c) , o(r) = i x j

0(s) = kc - j , o(t) = j , corresponding to the diagram

RI, syn,28: [
R~~ V~y,9 (i,j,r)[f) = V(i,k,r(Id(i)xfj)

In addition, we require

if

R1 ITh,13 s[<g,pro J2 (i"J)>J &% r )r

then

if

R ITh,14: tfproj 2 (ixJ)J St(a(r)) r

then

t S110(w (ij,r)

3:(Ob(c) x Ob(C)) x Rel(C,%) -. Rel(c,%)
.id,o

existent ial quantifier mapping, is defined analogous to v, as, ffor
all i,j e Ob(C) , r e Rel(c,%) with a(r) =Ix j
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with associated commutivity of diagram, Implying

R Isyn,3 0 : f (3(i,j,r)) =j

RI ,syn,31 (~~)f (~~[dix]

for all i,j,k 6 Ob(c) ,all r,s,t,u,v e Rel(C,%) ,all

f e Ar kj (C) ,all g EAr ixj k(e) , o(r) = I x j a(s) = k x J

C(t) =o(u) j j

RI ,Th,1 if

r %cy~))t (pro J2(ixJ)] S%(air)) u[ pro j2 (ixj)J

then

(3(i,j,r) A t) :5 (a(r)) urpro J2 (ixJ)]

RITh, 16 i

r 5 (a(r)) t(<g,proj 2 (iXj)>]

t h e nr : %a ( r ) ) ( 3( i , j , t ) ) [ p r o J 2 (i x J ) 3

Foun(e,1) Ob(c) -. Rel(c At) , the equivalence mapping is defined
to satisfy the usual;

For all i,e Ob(C)

R Iay,2 (-.(i)) = i X I

Also define the associated mapping

Ob(C) x (Ar(C) x Ar(C) -# Rel(C,%)

id,Beproj 1  (S,B),(SB)

where for any i,j e Ob(c) and any f,g e Ar J1 (C)

fXIg . (fg)

noting here

C(f ~g). =

In addition, we require, for all i e Ob(c)

R I,Th ,17 : T(i) 
:S I ) (Id(i) 

-I Id(i)) 
(reflexivity)1 

0



Symbolization and Evaluation of Language 271

pT,8 (proj 2(ixi) 'c, projl(ixi)) (symmetry)

RI,Th, 19

A (proi(ixi)oproI ((iXiXifl - (pro 2 (ixi).<ioj (')X )

yroj I(ixix= proj (ixixi)

-proj (Ixixi) proJ 3 (ixixi) j

(transitivity)

Clearly S ca erplcdb using (T) ,etc.

In addition, we require for all r e Rel(C,%) with c(r) = i
all f e Ar(i,j) , all i,j e Qb(c)

RI,Th,20* ((proj I(ixi) Xi (pro J2 (ixi) ) A r~proj,(ixi)])

:S~(xi)r[proj 2 (ixi)J (substitution for
relations)

(substitution for arrow
composition; also the
natural generalization of
functional extensions by
fuzzification),

((projl(ixjxixj) x. pro j3 (ixJxixJ) )A

((pro J2 (ixJxixJ) -j pro j4 (ixJxixJ)))

:5 (ixjxixj)proj 1 2 (ixjxixj) Xijpro J3 4 (ix~~xxJ))

Note also the definition, for all i,j e Ob(c)

prj1()I~),proj 2(ix) = Id(ixJ), etc.
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Need also to consider:

11-Ob(C) -+ Ob(c) , exponential mapping

{.j.) :(Ob(C) x Ob(C) x Rel(c,%.) -4 Ar(C)
id,a

class (or set) abstraction mapping,

G Ob(C) -. Rel(C,%t) ,membership mapping with basic
properties.

For all i,J,k,t e Ob(C) and all r e Rel(C,%) with

R I 5syn 3 3. S({i I J,r)) = j B((i I J,r)) = a(i)

R Isn3 O(e(i)) = x X 1i

R1syn,35: (i I J,r),-f =i (I I,r[Id(i) xf]

Ir addition, Is associated the mapping

e Ob(C) x (Ar(C) x Ar(C)) -. Rel(c,%)
(id,Boproj 1 (S,floB) ,(S,B))

where for any i,j e Ob(C) and any f e Ar i (C) , g -e Ar (C)

61(f,g) f e g 94e(j)[<f'g>J 6 E 1

i.e.,

Cif 4 g) = i

Also, for all i,J,k 4 Ob(C) ,f,h e Ar(C)
r~s,t,u e Rel(C,%.) , h e Ar~i x , a(r) = i x j a (s) =k x j
0(t) =k x j ,f,m G Ar PC) , g 6 Ar1 m(C) O(u) - j

R 1Th 2 2: if

(r[<h,proj 2 (kxj)>] :Sixj) h)

then

((h ei ((i Ij,r) o proj 2 (kxj)) :5%Ij h)

R ITh 2 3: if
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~then
t 5(kxj)s eG((i I J,r) o proJ 2 (kxj))

RI,Th,24 if

(ulproJ2(ixj)) A (projj(ixj) el (f-proj 2(ixJ)))

5 (pro( Pr°Jl(ixj) e(moproJ2(ixj)))

and

(1 r ,4-j)j A (proj1 (1xj) QI(moproj2(.lxJ)fl

(proj 1 (ixj) e, (foproJ2 (ixj)))

then

u A(J) ( I m)

A deduction category (C,%) satisfying properties
Loc(c,%t)(T, A - & , ± = F , v = or , *) , Quan(c,%)(v , )
Foun(e,t) (-, a, ( I ) is called a formal topos.

It follows readily (see Coste [41], pp. 9, 10) that letting
= Sub , (C,Sub) is a formal topos Iff C is a topos.

Note the following specialization as an example of a formal
topos

~(C,%) = (Higg(H),Sub)

Note also, e.g., for (Fuz(H),Sub) noting Fuz(H) is not topos,
as mentioned before, that, e.g., RI,Th,4,5 is satisfied for A
interpreted as orainary minimum: (T rr s s) implies

(Ft A Fr = r rA At s r ) pointwise over X , where

r' F ' t : X - [0,1] for some X E Ob(SET) (Abusing notation,

X = a(r) = a(s) o(t) .)
Similarly, A interpreted as ordinary minimum satisfies

RI,Th,6

(r r s , V,) implies ( rI r S A r t) point-wise over X

But, A interpreted more generally, such as in t-norm form

will not satisfy RI,Th,6 since a : min = A pointwise over

[0,1]2 and indeed if

Fs 
=  r t , pointwise over X

then choose any t-norm 10 < A (such as prod, e.g.), whence, in

general,

(F' Vt) < s

I
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Similar remarks hold for some of the rules for v , V , ,

Thus, the concept of a formal topos must be modified to allow
natural evaluations for more general negations, t-norms, t-conorms,
in the class of generalized set systems. This remains at present as
an open problem. One could state there are enough difficulties even
with Fuz(H) and = A= min , (or = v = max , nt = 1 - (.)

since Fuz(H) is not a topos and hence (Fuz(H),Sub) is not a
formal topos, since Fuz(H) - although a category and hence
(Fuz(H),Sub) is a deduction category - lacks a subobject classifier

* (See, e.g., Carrega [29].)
Nevertheless, semantic evaluation can be carried out into gen-

eralized set systems, but the soundness and completeness property
may not in general hold.
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Aopend ix. 3

Extensions of deductive categories ([41], Chapter III)

This appendix establishes a category structure, extending
Zadeh's and others' "fuzzification" or generalization of ordinary
sets and functions and relations on them.

The B6nabou constructions imbed deduction categories within
categories, and formal topoi within topoi, in a way so that any re-
suits involving deduction categories (or formal topoi) may be - in
a natural way - re-interpreted in terms of (ordinary) categories
and topoi. The latter two structures have received more attention
in the literature involving formal language and set theory (for
example, Johnstone [127]) than the former. Furthermore, by spe-

cializing these constructions over (SET,H') , the categories
and Gog(H) are obtained representing generalizations of Zadeh's
fuzzy set theory. (See section 2.4.) In addition, Higgs' and other
extensions are considered.

In the following results, we refer to deduction categories
all having syntax structure furnished by Th plus possiblesyn0

additional syntactic structure, depending on the additional pure
theoretical st.-ucture required, as presented in 2.2.2 (and a basic
concrete example in Appendix 2). through the corresponding axioms
and rules. If a deduction category eatIsffes "all" additional
structure, it is a formal topos (i.e., T, A, .1, v, 4, *, 3, 2,
making up Foun(e,%), Loc(C,%), Quan(e,%)); if it satisfies addi-
tionally all but a (i.e., T, A, i, V, -, *, 3) , it is called a
formal logos; if it only satisfies additionally (T, A, -, 3) , it
is called a formal regular category; and if it satisfies addition-
ally merely (T, A, -) , it is called a formal finite limit category.

It follows that (extending the previous result at the end of
Appendix 2), assuming C is a category with finite limits exist-
ing:

(C,Sub) is a formal regular category iff C is a regular

category;

(C,Sub) is a formal logos iff C is a logos;

(C,Sub) is a formal topos Iff C is a topos.

(i) B6nabou type I construction

Let (c,%) be a deduction category with additional property
Then define category YI (C,%) as follows:

Ob(Y I(C,%)) ((i,?) I I E Ob(c), r a %(I))

Ar ,? Ie,%) ) = U Ar (!I(C,A))(i~r). (Jo)
(i,Y) ,(j,e) Ob(1i(C ,%))

where for any (i,?), (J,9) c Ob(1I(C,1)) I

I
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Ar ( )) (Hf)) I f e Ar i j() arid f

satisfies condition (Gi))

where

(Bi) r S ( af],

and where (( )),e is an equivalence relation (depending also on

i,j) upon Ari,j(C) , so that for any f,g E Ar ij(c)

iff

(B2) r S (I) (fxcj'g)

Composition o is defined by, for any
(i,r) , (J,e) , (k,A) E Ob(?i(c,t)) , f e Ar ,j (C) , h e Ar ,k(C) ,
hof e Arik(C) and

((h)) ,Ao ((f)) ', e  d

is well-defined, since
e :9%(.1) A[h] e

implies , by RIThO (substitution) and Risyn,13

e(f] S3(i) A[h][f] =(i) A[hof]

and since

:5%(1) elf]

by RI,Th,2 (modus ponens)

rS %(I) A [hof].

Similarly, we can show the above holds for any h replacing
h, f' replacing f satisfying analogous of (B2) , etc., as
well as associativity.

For each (1,r) E Ob(YI (C,%)) , the identity arrow Id is

merely ((Idi))r, , where Id is the identity arrow for i in C
[() ?[Id ] I by R I,Syn,14

Theorem 1

Let (C,M) be a formal finite limit category. Then YI(C,%)

is a category with finite limits, (Yi(C,%),Sub) is a formal finite
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limit category, and there Is a universl arrow which is order pre-
serving, etc.,

where F C,): C -. ~c% is the faithful functor determined by

(a) For all I a Ob(C),

F ()1 (i,T(i)) e Ob(Y I(C %)

(b) For all i,j e Ob(C) ,f 6 Ar i(C)

F (C%(f) d(M)()). 6 Ar (j()(%)(CIl)U

and where the natural transform a(C,%) ~ .Z.SuboF (C% is given

as:
For all i e Ob(C)

a (C,%() e Ar %(i)SuboF(1) ((Preord)

i.e.,

where, for all T e %t(i) ,noting that 7 ? %I T(i) , and hence,

for (Id, : i -# i) the identity arrow on I in Ar(C) , we have

a(c'%)Mi)P) ((Id i))?Ti Q Ar (,)

and hence a~ (r% (1)(T) e SuboF (C,%)(i)

(See Theorem 2 for the definition of the term "universal".)

(1i) B~nabou type 11 construction

Now consider a similar - but differently appearing construction
- for (C,%) being a formal topos. The connection between type I
and type II constructions will be given In part (iii):

Let (C,%I) be a formal topos. Define category Y II(C, %) as

follows:

=b( Ui (rCi%))JO)(II((C,%))

ArYI~,)UA
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where for any (i,?) , (J,G) e Ob(T 1 1 (CA1.)) I

Ar 1 jV) ( J 9) (!F(C,1

((((A))) ?. A E6 %(ixj) and A satisfies conditions

(Fl), (F2), (F3)).

(Fl) A S (ixj) ?E~proii(ixifl, G~proj i(ixifl

(F2) rfprojiixj)] =%(ixj) (3k)(ixj,Afproj. .(kxixj)j)

(F3) A~proj ij(ixjxk)] A A~projl (ixkxj)]

:5%(xjk)(proj i(ixjxk) -, proij(ixkxj))

(abusing notation).

In individual variable form, equivalently, we have, for all

x y w ,z

(F2) A[<x(i),y (J)>],A AfZxk) ,w'Z~' ' y ((j) ))

where S is S%-

(((A))) T 9  is to be interpreted as the equivalence class of

all A' e %(ixj) such that A' = 2(ixj) A , i.e.,

A : %1)A and A :Sj A' .

Composition o for Ar(?1 1II(C,.1)) is defined by, for any two

arrows (((A))) 4 Ar (ilp(I)( I(,) and

d
= (((MoA))) , where noting M e %(Ixj) , A e I(Jxk)

pUOA (3j)(i x k, /j(proj (ixixk)] A A[proiij(Ixixk)])

(3 y (i))(A(X iM ,y () A Ji(y ,)z (k) e %(i x k)

and where for any (i,?) e Ob(Y1 (,) the identity arrow is

Id~ (i ")

((Y'[proj (ixi) A 'P(proj (lXi)] A (proj (lxi) -i proj (ixi))))
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Theorem 2

Let (r,%) be a formal topos. Then Y iet) is a topos,

(:iI(C,%),Sub) is a formal topos, and there exists a faithful

(order preserving, etc.) universal arrow

(G~c ),( ,))e Ar( ,(I (C,%),Sub) (DeCat) ,

where G(C,) : i(,%) is the faithful functor determined by:

(a) For all i e Ob(C) ,

G (C'%)(i) -9 (i,T(i)) Ob(jITT(C,%)) I

(b) For all i,J e Ob(C) , f e Ari'j(C)

G (C,%)(f) d (((proj (ixj) - j (foproj i(ixj ) ))

= ((y J) . f(x(i)

ArG(C, (1) ,G(C J) (1II(C ,1k)

and where the natural transform

9L -: . SuboG(C,) is given as

For all i e Ob(C)

/3(C(,)(i) 4 Ar(i) SuboG(,(i) (Preord)

%(I) -+ Sub(G (C)(i)) I

where for all r e %(i)

A(C ,%) ( i )

(([proj (ixi)] A (proj (ix4) >i proj (lxi)) )))
(M i (1)1 (2"1

4 Ar(ir),I,T(i))(:II(C, )) I

and hence,

A % ) e Sub(GC,)(c))

By (G%,C )) being universal we mean that for all

(C',%') e DeCat and each (G,/') e Ar (DeCat)
(C ,1k) , (C ,%'
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there is a unique (G",0") e Ar (DeCat) such

that the followng diagram commutes:

( , ( G C ' ) '/(C ' ) (Y ( C( ,%) ,Sub)

((' ,G

Remark 1.

Note that if (C,%) is a formal regular deduction category or,
further, a formal logos, then the construction I i(C,%) remains

valid. In turn, Theorem 2 holds with the appropriate modifications
("formal regular deduction category" and "regular category", used in
place of "formal topos" and "topos", respectively, for example).

(iii) Connection between type I and type II constructions

The following result shows that for (C,%) a formal topos,
type I constructions may be considered a subclass of type II

Theorem 3.

Let (C,%) be a formal topos. Then there is a faithful
functor (i.e., a one-to-one injection which is a functor)
q: II(C,) - I ii (C,%) . More specifically, we may choose § as

follows:
For any (i,?), (j,e) e Ob(I(C,%)) , and

((f)) ,e Ar (i, ),(j9) (: I ( ,%) where f e Ar i j(C)

(i, ))= (i,?) ; ((j,e)) = (j, ) ,

where

g(f) g (y i i)) A ixj] A OLYixJ]
i jixj ixj

recalling the notation x (i) - prcJ (4 xJ) U) d r4

Proof:

First, it follows easily that for any fixed
(i,Y), (j,9) G Ob(?I(C,%)) and any f e Arij( C) that 9(f)

satisfies properties (Fl), (F2), (F3) iff f satisfies property
(BI).
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Next, we can show is one-to-one w.r.t. (( )) and
((( )))

Noting that since C,%) is a formal topos, the followinq
axioms and rules invoked are valid:

Let f,g e Ari'j(C) with ((f)),((g)) E Ar(i,), , )( I(C,.)

and suppose g(f) -M(g) Thus, trivially, 9(f) -5 9(g) and by

use of the substitution rule (RIThO) , replacing y(I by
IThOixi

gox(J) everywhere yields (using now simplified notation)

((f(X) - f(X))A'P[X3AG~f(X)]) !5 ((f(XI = g(X))AT[X]A9[f(X)])

But since (by R I,Th,17 and the definition of T)

T = (f(x) - fx')

and hence by RI,Thi and RITh,4 for any x e qt(ixj)

K A T &%

and by (6), since x : %C and x T

X a A T,

and hence

X 5C X A T..

Thus,

(f(x) - f(x))Ar[x]A9[f(x)] ?1 Xt]A9(f(x)]

and hence by RI,Th, 2  (modus ponens) ,

?[X]AO~f(x)] _'5 (f(X) - g(X))AT[x]AG[f(X)]

Then by use of RI,Th,5 and RI,Th,2 (modus ponens) we obtain

(a) ?(x] A O[f(x)] S (f(x) - g(x))

Now note the following theorem.
For any 9 A e %(ixj) ,

'C A iff X ' A A

(See Theorem 1 (ii), section 2.2.2 (VI).)
Now sin-e ((f)) 6 Ar(iw),(j,)(1i(c,1)) ,then condition (BI)

holds:

W[x] & O[f(x)]

Hence applying the above theorem, where

C = ?(x] and A = orf(x)] , we have
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(b) [x] = r '[x] A e[f(x)] .

Hence combining (a) and (b) by RI,Th,2 , we have

r[x] :5 (f(x) x g(x)) ,

i.e., (B2) is satisfied by f and g and hence by definition

((f))V,e = ((g)) ,e

(vi) Higg s construction extended

Let (c,%) be a deduction category with additional properties
where required, beginning with A, v, 1, T

Define YII(C,%) as follows:

Ob(TII(C,%) d {(i,) I i e Ob(C), 'P e %(ixi) with T

satisfying (HI), (H2))

(HI) R[<x(i)'Y M>] = (ixixi) r[<yl'x(i)>]

(i.e., RI,Th,18 , symmetry, holds for x replaced by ')

(i.e., R I,Th,19 transitivity, holds for replaced by ')
xMi =(MI) y (1) = M(i z(M = z(M

= Xxixl ' xixt i xixl

Ar(Ylll(€,=)) U Ar () Iall (1,r),(j,e ( ' ) ( ' ) I ( ' )
e Ob( III (C 15) )

where for any (i,r) , (J,G) e Ob(Yiii(C,)) I

Ar ,%),(j,e)(iiI(C,)) d (f I f e %(Ixj) and f satisfies
(H3), (H4), j'H5))

(We assume %(.) - equivalence here as in type II constructions.)
Simplifying notation somewhat

(H3) '[<x(i), y(M >] i f[<y( ), z(J)>] : f[<x(i),z(J)>] ,
f[<y (i), z(J)>] A e[<z(J),w(J)>] S f[<y(" ),w(J)>] ,

(i.e., R I,Th,20 , substitution for relations, holds for f and

replaced by r)

(H4 f[<y( zl>] A f[<y() w > [<z Jw >
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(H15) V C fj>y ig>]) = D(,P) [yi

where D('?) * A(i) is the diagonal part of r

Composition o for r II(C,%) is defined by, for any (i,r),

(JIG), (k,A) a Ob(Y III(C,%t)) and f -e Ar~i)(O

C1 V (ft<x(i),h>] A g(<h, z(k)>])

I h e Ar(c),1B(h) = j I

For each (i,?) e Ob(T1 1 C U Idi) ? is the identity

arrow on (i,?)
It easily follows that for any (i,Y') 4E Ob(Y 11 1 (Ct)) I (from

(H2))I

r ,j<x(i), y(I)>] :5 D('P)[x~1 )] A Der)[y(i)J and (from
(H4), (H5) for any f c; Ar (ir) (JIG) : Ie )I

Sf = f[<x(i) y (J)>] : D(r)[x~i)] A D(G)( ) I ]

Note that (H2) - (H5) are equivalent to the following
composition equationst

I I(C,%) Is a category under ,and in particular, for any

fold (il) = Id (J 9 )of = f ( (H3))

r =Id olr) d (r)= Id i)(H),H2,

together with (due to the associativity of v - see 2.2.2, VI),

fo(goh) =(fog)oh) I all fI g, h e Ar ( 1 1 1 (c,%)) I where

well-defined, the usual properties for arrows in a category.
In addition,

foD(e) =D(r) H)

where (f0 P :(J,e) -. (i,rf)) is the "opposite" of f
For any (i,r), (J,G) e Ob(Y1 1 et) II define:
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X, = if I f a Ar ij(C) and D(T) :S(I)'9 )f1

i.e,, f e r'9 satisfies (Gi), and hence essentially, e is

the same as Ar (i,D(P)),(J,D(e))(YI(C,%))

Next, define

i, = (f I f e Arj (C) and

,[<x(i), y(I)>] :S e[<fox(i),fOy(i))>]}

and in turn, define

9v, (G(f) I f e , }

where here

g(f) d y(fox(1),y(j)) A D(Y)[x ( i ) ] A D(e)[y ( j ) ]

It follows immediately that

X '?Q .R I' .Ar .'(C)? , e  ? ,, Ai,j(¢

and by using (Hi) - (H5) ,

9?'q c Ar (I'r)'(Je) (!fIrI(C'%)) r. 9(ixJ) @

Now define

d((i,) (i,) e Ob( III(C,%)) and there is some

f e Ar(C) with B(f) = i such that
D(r)[f] = (I)T(I))

the class of all normalized (or normable) objects of YiI(C,%)

It then follows that for any (i,?) and (j,e) e A

0 A '

and hence

0 X r, 9 X rO 9 Ar ij(C)

0 * g ,e Ar , )Ii (C , )) 9 (ixJ)

and

Y iii'X (C,%) _ (Ob( iiiX(C,%)), Ar(1i ii,X(C,%z))) is a well-defined

subcategory of III(c)) where

0b(- iii, (C,%) ) _d ,
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A( '(C')) over all

I(i,F)I , 0)

Note that for the ordinary Kr6necker delta 8(i) e %(ixi)
where for all f,g 4 Ar(C) , S(f) = S(g) = j G(f) = B(g) = I

= TM1 iff f =() g

(i)[<fig>] g

( IMt Iff f ( adi

(Ia(i)) e Ob(Y III,(C,%)) In addition the constant relation

T(ixi) identified as

T(ixi)[<f,g>] = T(i) , all f,g

is such that (i,T(i)) e Ob(:Iii, (C,%))

Suppose now (*) (i.e., RI,Th,11,12 hold) is valid for (C,%)

Then for each (i,r) e Ob(III (C,%)) , the intuitionistic Kr;necker

delta is defined as

e.,= e ?[<xli), ( m >3

(D(r)[x(i)]) v D( )[y(i)]) * F

noting

Some basic properties (see also Fourmann and Scott [593 and
Scott [226']) are:

For all (i,?), (J,G) G 0b(Iiii(C,%)) :

(1) <x(i),y(M)>] e(

Indeed,

(2) 7[<X(i),y(i)>] =D[x(i) ]  
A D[y (i )] A [<x(i),y(1)>]

= (Dfx (j ) ]  v D[y(i)]) A e [<x(i),y(I)>]

(Proof: Theorem 9, 2.2.2, VI, with a = D[x (I) ] A D[y(i ) ] and

?[<x~1 1 ,y(1 )>] , yields S for (2) Also, RI,Th,1 2 , where

r = b and s = a , as above, yields t for (2).)

(3) e [<x(i), y( )>3 = T ,

if

I
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D[x~ v Dly ] 3 -[<x ,y >]

i.e.,

D[x (i )] = D[y ] = ?[<x ,y >]

(Proof is immed. te from Theorem 9, 2.2.2, VI.)

(4) (i,e 1,) e Ob(fiII(€, ))

Proof that transitivity holds for replaceC t; e. is

complicated. Note however:

(5) Define for any i e Ob(O) and any r,s e %(i)

r <s() (or s >(i)r)

iff r ( , but r ) s

Then we can choose (compatible with RI,Th,11 and RI,Th,12)

(r= ) [T(1) ,if r R(1) s

Ss , if r < R(i) s

in which case e, simplifies to S
T Iff D(V)[x(i)]vD(r)[y (  I

= F[<x(i), (i)>]

e ,(i) >] = iff D()[x (i) ] = D(r)[y(i )]

= P[<x( ),y ()>] ,

?[<x(i),y(i)>1 , otherwise

(In this case, the proof of (4) becomes easy, by considering

e [<x(i),y(i)>] A e [<y(i),z(i)>] and e [<x(i),z(i)>] , and con-

sidering all possible cases when e, = T or < T.)

Note the following special cases for (i,r) e Ob(Yiii(C,%))

and the resulting e. :

(i) C[<x(i),y(i)>] ! D(r)[x(i)] A D(r)[y(i)]

T , if D(i)[X (i) ]  D(P)[y (i) ]

e. [<x ,y )>] [<x ,y >] , if D(r)[x
e I # D(V)[yU)]

Equivalently, we can begin with any q - %() and define 5
17 [<x(), y()>) 4 qx(MI)] A q[y(i)] , yielding
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1i~ '7 Ob ( :111 (C, )) a d T I f q x i
(e. {<M y > T i Mf If = q1yij

,Yx >1 = T ()((

the ordinary Kronecker delta function over I

(6) For any f e Ar (ir)1(JB)19 I1) , e,, and e. satisfy

(H3) formally, where r is replaced by e., and a by e.

(Proof: Consider, e.g., e., : By (H3) and property (2) above,

D(,F)tx(i)) A D(Y?)jy( 1)) A e r JcXM' y M>] A f<~)ZJ>

But since f[yiZ > 4- D(TiCyM1 ] , the right hand factor
is absorbed, and since

D(V)(x 3i A e ( <xM ,y M>1 A f[<y 1,z ZJ>]

= ea [<x(i), y M>] A [Y.)ZJ>

the desired result obtains.)

(7) Noting that X e.eaa ' , we let g :Ob(O) -* Rel(C,1)) be

arbitrary fixed so that for all I a Ob(C) , g(i) e %(ixi) so that
(i,g(i)) oE Ob(Y III(C,%)) . Def ine then the contravariant functor

9 C - Preord, by, for all i e Ob(C),

g Ar 1 (g(i)),(i g(i)) (:rIII (C,%)) U (eg(1 ))

with % (h) = %(h) , for all h e Ar(c) . Define

xe U x eg.,gj Then (Ob(c),X e is a category and
C all g)Cgja

i, Je~b(c)
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((Ob(C),e) )) Ls a deduction category with equivalence ee g
represented by eg , i.e., eg satisfies RI,Th,17 - RI,Th,21 with

replaced by x d e (slightly abusing notation). We call egg g
an intuitionistic equivalence, due to the structure of ThK *

At the formal language level, we may consider distinguished
function symbol (g : Ob(L) -+ Rel(L)) representing "partial
equivalence" with syntax rule added: o(g(i)) = i x i and with
temporarily omitted, with only R I,Th,18  and RITh,19  satisfied
by g , replacing X , and where distinguished function symbol
(Ex : Ob(L) -* Rel(L)) representing "existence" or "extent"

Ex 9(1) 2= D(g(i)) dg(i}[<x(1),x(1)>]gg

(where Id. = <x(i), y( )>) In turn, define equivalence

: Ob(z) -. Rel(z) by
g

-(I) X (I)[<X( I),y M)>]

(Ex g(i)x(i)] v Ex (i)[y(i)])
g() [<xg y >]

The obvious compatable model H I for LsynKK preserving these

relations yields the following:

II(i)E<x(i),y(i)> ] = lExg () x(i) ]H, Hvi IHEXg (i) y(i) ]

= It*it I1g( )[<x(I),y M >31l
= e g(i) ([<11xMt~j ,  1ly(1)11>]) ,

HlEX (i) (i)]1 = HExg(l ) [X
(i)]

11tD(g(1))11[<11X(i)11, 11y(i)11>] ,

= 1g(i1l[<1lX(i)1l, l1 )lMl>] ,

etc.

Remarks 2

Analagous to Theorem 3, (C,%) can be imbedded within
(fIII(C,%),Sub)) by use of the map

(H(c,1), 7(c, )) : (,,t) - ?iii(c, ) where for all I e Ob(C)

ad , ) all (i,8i)

and, for all f E Ar 1 ~j(C) ,
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H(C )(f)[<x(),y()>] 8,[<fox(I),y(J)>]

and i(., % - SuboC is defined as, for any i e Ob(c)

() e Ar%(i),Sub(I,8 )(Freord) , given by, for any r e %(i)

(C,%) (i)(r) = r[x
(
I

) ]  
A 8 1 [<x ),y(I)> ]

etc.

More generally, we can replace for H(,, ) the relation i -s 8.

i 4 Ob(c) , by , e.g., g , as defined earlier in this section. To
what extent any such mapping (whether for g arbitrary or for
g = 8.) is a functor and whether YII i(c,) is a topos remains

open for the general case. For the particular case = H , see
the related results In section 2.4 and the following remarks here.

Remark 3

All of the previous development specializes to well-known
structures when the base deduction category (C,%) Is chosen to be

(SET,H

Case (1) : ?1 (SET,H) , fcH a complete lattice such that is

formally treated as ordinary equality (see Case (2) for a similar
situation) is essentially Gog(H) , Goguen's category of fuzzy sets
[96], obtained originally as the characterizing category satisfying
six basic conditions. (See section 2.4.2 D.)

Case (2): YII(SET,H') , for H a complete Heyting algebra, except

for having x formally used as ordinary equality in the definitions

of Ar(:II(SET,H')) (see property (F3)), is the same as Eytan's

category Fuz(H) , another extension of fuzzy set theory [56], [57).
When H is not, in effect so constrained, but rather allowed to
have its "natural" full Heyting algebra structure, including
properly interpreted by, say, e , then the resulting category,

Fuze (H) is indeed a topos. (See 2.4.2, A, B, F.)

Case (3): 1 1 1 (SET,H) , for H a complete Heyting algebra, with

all of its Intuitionistic structure, is always a topos - Higg's
topos Higg(H) - and indeed is the Grothendieck topos of sheaves
Sheave(H) [59], (226']. (See 2.4.2, E, F.)

Case (4): The relationship ("representativeness") mentioned in

Eytan (56], between Gog(H) and Fuz(H) is a i cate of

Theorem 3. for (C,%) = (SET,H*)
For further comments on the above categories and relations

between them, see section 2.4.2, (F).

ID
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2.5 Probabilistic and approximate reasoning

2.5.1 General comments

It appears that relatively few individuals recognize that set
theory based on probability logic (a multi-valued logic) is the
basis of standard statistical approaches to problems involving
uncertainty. (See section 2.3.9.) With this in mind, it should be
pointed out that many semantic evaluations exist for set theories
relative to logic, including classical two-valued logic (the deter-
ministic approach), Intuitionistic logic, and Lukasiewicz R -logic

(section 2.3.4). In addition, why choose the particular logic of
probability when there are infinitely many alternatives, some of
which were outlined in section 2.3.3? Why cannot we switch logics
for various problems involving uncertainty? On the other hand, it
has been shown that quite different appearing set theories/logics
may be directly related, such as probability logic with Lukasiewicz
logic or with a variation of Lukasiewicz logic. This has been
accomplished, e.g., through the coverage functions of random sets.
See section 2.3.8, Chapters 5, 6, and section 8.3. Thus these
relations embrace the choice of probability logic; however, the
latter must be suitably modified. The difficulty in choosing a
particular logic lies essentiallv in the choice of logical operators
uomprising the logic. Since any problem can be described by an
appropriate formal language, one can use the data to guide the
choice of the most appropriate logics. (See Chapter 9 or section
2.3.5.)

In this section, we outline an approach to the manipulation and
explanation of uncertainty in knowledge-based systems, employing
"fuzzy" logic as a basis for approximate reasoning. For further
background motivations and various applications of fuzzy logic, we
refer the reader to Zadeh's work, e.g., Zadeh 1280].

We can view fuzzy logic as a semantlc deduction procedure as
opposed to just deduction.

Specifically, let L be a formal language, 11-11 be a fixed
semantic evaluation, and Loc(L) a fixed logic. We assume at least
for the present, no additional theory ThK(l) In particular,

consider * (implication) in Loc(L)
Define, for any wff's O,V E wff(t) , the deduction sequent

r# F) or iff I V vI = I Note that, for the logics Lk

and G. , k = 2,3,. V , - w iff ik|11 S 111Pi (semantics entail-

ment). (See section 2.3.3.) Similarly, deduction holds for

(1 ' 2 Om r Iff 114j = r = 1 , j = 1,2,...,m

Note that Zadeh's fuzzy logic is not typically formalized in
terms of a formal language and semantic evaluation framework. In
fuzzy logic, the truth values - as typically occur in multi-valued
logic - in the unit interval are replaced by linguistic truth
quantifiers such as "very true", "slightly false", etc., and the
numerical descriptions are in general replaced by linguistic ones -
i.e., linguistic variables such as age, with typical values: young,
very young, old, middle age, ..... These linguistic values in turn
have numerical representations in the form of fuzzy set membership
or possibility functions. (See Haack [102] and section 10.2 A(I)
for criticisms of fuzzy logic.)

0
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At this present stage of designing knowledge-based systems,
statistical reasoning and techniques of artificial intelligence
(AI-based techniques) are the two main approaches to the analysis of
uncertainty. Much research remains to be done in order to see
whether or not a combined approach of statistical/probabilistic and
other techniques (e.g., AI techniques) will lead to a better way of
modeling of expert knowledge systems. (See the recent paper of
Spiegelhalter and Knill-Jones [246].) As far as meaning represen-
tation in natural language is concerned, an attempt will be made in
the following chapters to establish some connections between possi-
bility theory and random sets.

2.5.2 Approximate reasonlng

Approximate reasoning (e.g., inexact reasoning in clinical
decision-support systemos) is commonly used in knowledge-based sys-
tems, in particular in expert systems. In general, the data base in
a knowledge-based system comprises:

(i) facts expressed by sentences

(ii) rules expressed by conditional sentences (where con-
ditioning is expressed as a binary logical connective).

All sentences in a knowledge-based system have an associated
certainty factor, i.e., numerical value lying in the unit interval
expressing the degree of confirmation associated with the sentence
in question (See, e.g., Shortliffe and Buchanan [236].).

The basic problem in the analysis of uncertainty consists of
assigning an associated degree of uncertainty to conclusions from
various combinations of hypotheses from (i) using (ii).

Zadeh argued that if (i) and (ii) are imprecise, due, e.g., to
natural language, then the computation of certainty factors is not
obtainable in classical form. But, If we aczept a weaker replace-
ment - linguistic certainty for numerical i,;ertainty - then fuzzy
logic may be used as a basis to carry out approximate reasoning. In
the latter, classical deduction reasoning is carried out, modified
by the use of imprecise sentences, and thus hypotheses and anclu-
sions modified likewise.

To illustrate the use of fuzzy logic in deriving inferencc
rules for quantified propositions, we examine below an example from
Zadeh [289] and show that these deductions are semantically consis-
tent.

Let X be a finite set, and A , B , C be attributes with
domains in X . Let QI 'Q2 be linguistic quantifiers, e.g.,

"most", with domains in [0,1] . We write, e.g., 4 A for the mem-

bership or possibility function of A ; and Q1 ® Q2 as the product

of fuzzy numbers , an extension of the product operation on ordinary
numbers - considered as singleton sets (see, e.g., Dubois and Prade
[51]).

Consider the following deduction

P1  Q1 A's are B's

P2 Q 2 (A and B)'s are C's

P3 (Q1 0 Q2 ) A's are (B and C)'s
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To evaluate PI' P2  P3' we use the approach to quantification

(section 2.3.8) using conditioning with

1wt -/card(X) Oa = A or = I (bndsum)

Let u = A (A(X) A (PB(X) / A(X)
x X

v = z (PA(X) A PB(X) A 0c(X)) / Z ( XAx) A Blx))
x x

w = z ( A(X) A B (X) A OC(X)) / I A(x)
x x

Now

(1) tPi 311 ( (w) supO (S) A Q t)Q 1 Q 2 fs't ( Q s  ^Q2
lst--w

= sup (4Q (S) A (Q(w/s))
s 2

2Q1 ( Q2

= liPI and P211 .

Next, if z A(X) c(X)) / AlX)
x x

then 4) (oQ Q2)(z) d sup (OQ (s) A PQ2(t))

>slip (0Q (S) A t M2())
( 1 QQ Q2s,t

Ls t=z

> Q®2W , (ii)

since v 0 ( XA(X) A 0c(X)) / I (A(X) A @B(X)) = and w uv

x 
x

The inequality (i) means that (PI and P 2) l- P 3 , and (ii)

means (P3 I- wff) for any wff whose truth value is 0:Q IeQ2(Z)

See Zadeh [288] - (290] and the development of the calculus of

deduction sequents, similar to the case illustrated above.

0
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2.6 Examples of meaning representation of natural language

This section through a large number of examples, extends
Zadeh's approach to modeling natural language (15], (277], (279],
(280]. (283], [286] - (290].

The basic goal of modeling natural language may be formulated
as the determination of the "most appropriate" mapping p : Y - 9 ,
where Y is the class of all sentences (or open wff's, etc.) of
interest and - is the class of all formal strings or wff's. This
is based on the results of the rest of section 2. (For convenience,
we have slightly changed some notation.) See also the Appendix,
Chapter 10.

(i) All predicates of the form <x e A> are in T where
x e X and A is any fuzzy subset of X , x , A , X otherwise
arbitrary

(ii) If Pl ... Pn e then arbitrary (well-defined)

combinations of not , & , or operating on Pl....Pn are also

(iii) If p1,P 2 E • , then (pljP 2 ) G 9 where the conditional

operator (. I.) is defined implicitly by

.l &P2 = (PlIP 2 ) & P 2 )

and

quant(p1 1p2 ) e ,

for any allowable quantifier "quant", such as: many, few, several,
all, sometimes, etc.

(iv) If p e 9 , then int(p) E9 , where "int" is any
intensifier (or extensifier) such as "very", "little", etc.

By considering a large number of sentences empirically, the
above four conditions appear sufficient to characterize sentences.
These cover:

I . MTal/mood operators - include:

(a) alethic - necessity, possibility (= necessary not),
probably likely, etc.

(b) deontic - permission, exclusion - may, allow,
imperitives/jussives;

(c) obligative - must, ought to, should, etc.;

(d) volitive - want, hope, expect, wish;

(e) epltem; - belief, doubt, knows;

(f) threat;

(g) potentiality , etc.
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All of the above forms may be treated by suitable indexing in
conjunction with the compatibility of the (mood) index with the
particular type of mood considered. For example,

p("John wants very much to run")
= "(Or(John e runnersa) & (a G very(volition)))"

where the degree of volation is measured on a scale from 0 to 1
(See also, e.g., Snyder [245) for development of modal logic.)

II. Temporal operators - past, remote past, future, completion of
action vs. incompletion of action - "used to", etc. - may be
similarly modeled:

p("John was a good man")
- ' Or(John e (good men)t & t e was)",

t:0

t being the time index (domain R , present nominally 0) "was", a

fuzzy subset of R , with membership function being decreasing.
(See also Rescher and Urquhart [215] or McDermott [173'] for de-
velopment of temporal logics.)

III. n-ary relations are the same as n-ary verbal forms. For
example,

p("John runs quickly to the store for her")
= "(John, store, her) e run quickly - for"

In addition, as mentioned previously, for each choice of arbi-
trary fuzzy set system

_ !4 ((not' (P' o )

there is a truth mapping

11.1 : 91 - [0 ,i]

where the following isomorphic-like (or commutative) forms hold for
any p a • , assuming truth functionality

It (not(p))1 = Pnot(1p1 P )

& p ) = 1 & (11PH
jeJ JEJ

' (Or p 4 r, r' p!!

I(<xaA>)1 = PA(x) ; all x , A , X , etc.

Hence, the composite mapping

1. lop : !F - [0,1]
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is a truth evaluat'on mapping from sentences into their correspond-
ing truth values.

Some additional comments concerning the modeling of natural
language:

1. Many sentences have ambiguous interpretations which can
often be resolved through "disambiguatinq - context. For example:

"He uses her well." (two meanings)
"John found a book on Third Avenue." (three meanings)

As Leech points out ([153], pp. 78, 79) probabilistic (or for
that matter, possibilistic - the authors) weights could be assigned
to the various interpretations, based on usual understanding of the
sentence. See Oden [196) for an extensive fuzzy set analysis of
this problem and an excellent survey of the field.

2. The cardinality of a fuzzy subset A of an ordinary space
X I

card(A) = X PA(X)
xE X

has played a large role in symbolizing quantifications. (See, e.g.,
almost any of the Zadeh references.) However, as natural as the
concept appears, in general, it is not representable as a compound
definition based on a given fuzzy set system ($ not'@&' or ) as is

the well-used ratio

card(A n B) / card(B)
=Z O&( A(x),PB(x)) / Z4B(x)xe X xeX

where usually & is chosen as min. (There is also an obvious

tie-in with the averaging operator and fuzzy set partitioning. See
[91), Theorem 6.5 and Cor. 6.2.)

An alternative to the above approach, using only the basic
fuzzy set operators 4P and or is given:

Let X be a fixed ordinary set and let

u : X - Y and v : X - Z

be two mappings, each repreteL iiy a linguistic or numerical mea-
surable such as u = ht(.) , v = age (-) , w = color (.)
x = distance between (.,.) , etc.

Also let

q : X - [0,1]

be a possibility function (or in particular, a probability function)
representing the weight of importance attached to each x e X ,
corresponding to fuzzy subset wt of X . Let C and D be two
fuzzy subsets of X

Then defining
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S C 1'3x)(xEX & u(x) E C & x E wt)

IIS cI = orl l Ul )), (x))) ,

xeX
and

SCO D  (3x)(x e X & u(x) 6 C & v(x) e D & x e wt)

11IS cO)II1 = itorl¢&lclUlx)), (ODlVlx)), q(x)))

xE X

See the previous analysis of conditioning and quantification in
sections 2.3.9 (B) and 2.3.8.

Then analogous to the development of conditional possibility
functions, note that it always follows (from basic properties of
t-norms) that

t1(Sc) 1 IIISCOD )1

and it is natural to define SDjC implicitly by

S = (S & SDIc,

whence (using the continuity property of as in the definition

of conditional possibilities)

11(Sc D)II = I1(Sc & SDIC)"

= 4&(1ScI, "SDIc")

Note (as in the conditional possibility definition), if
prod, then

USDIC1 = 11SCD l / ]isc ,

and, if further, or bndsum and q is chosen as probability

function, then

1IScI = 11 (clUlx)).q(x) ,
Xe X

US C4D[I,:% Z Yc (x)).@PD(V(X) )'q(x),
-- xe X

yielding a result quite similar in form to Zadeh's procedure for
forming fuzzy cardinalities and fuzzy precentages - except for min
being replaced by prod - in order to model quantifications. How-
ever, note for Zadeh's fuzzy set system (1-(.),min,max)

1S DI C" = 1 ISceDII = 1Sc I D1 0
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Smax(min( c (Ulx)),O,(c(x)),qlx)))•

xeX

which is less close to Zadeh's fuzzy cardinality and fuzzy quanti-
fication modeling!

3. The modeling of interrogatives has been omitted. (See Zadeh
[290'] for one approach to the symbolization of questions.)

4. It has been proposed (L.A. Zadeh, 1983, personal communications)
that quantifiers are essentially generalizations of probability
measures and hence may be further characterized through this
approach.

The following examples illustrate the mappings p , ,-. and
ii.iop in evaluating a number of different sentences. Note that in
most uses of quantifications, we employ Zadeh's approach using fuzzy
cardinality (277], [283), [286] - [290] - for simplicity - rather
than by use of the above more complicated (but closer to first prin-
ciples), alternative approach. However, one example illustrating
both approaches will first be given.

For further discussion of the formal language interpretation of
natural language, see the Appendix at the end of Chapter 10.

Note: In the beginning examples, we use both p and t to
indicate possibility/membership functions.

Example 1.

S1 4 "Perhaps there are a hundred happy people in the world".

Using Zadeh's approach:

IISI = Pperhaps(OP100(x Z happy(x)))

where

#perhaps : [0,1] [ (0,1] ,

0,100 : [70,130] [0,1] ,

and

X - set of all people in world.

Using the alternative approach presented above,

IS 1 11 (Por(O&(PmloO(card(B)), & (Phappy (x ) ) ) )

BrX xEB

where now

0.100 :Set of integers -. [0,1]

and

card(B) i no. of elements (i.e., cardiality) of B

I
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Example 2.

S 2 "If visibility Is very good then most likely a type A2A

submarine will not be found in area III over the standard search
period."

Suppose (maximum) visibility is defined in terms of miles over
a possible continuum [O,mo] , where m0 is some sufficiently large

upper bound. Then "at least good" relative to this scale is repre-
sented by a monotone increasing possibility function pG and "at

least very good" is represented by pVG monotone increasing with

PVG 2 PG *

This can be accomplished simply by either use of the transforms

PVG = pG (- + a) or pVG (  G (.) +

for constants a,p > 0 0 after first modeling PG In this case,

PVG is considered as an intensification of PG On the other hand,

PVG could be modeled directly.

"Most likely" is a truth quantification and is represented by

PML : [0,1] -1 0,1] ; PML(x) I x , all x e [0,1] ,

due to loss of truth values.
Let X be the set of ships of interest.
For each time t , let

PF iII  : X [ 0,1]

represent the fuzzy set of submarines found in (fuzzy) area III at
time t . Also, let

PT : (0,1]

represent the standard search time period - symmetric and unimodal,
etc.

"Will" is represented by
P w : [0,11 1

a monotone increasing function, with R+ Identified with time:
present time being 0.

Some fuzzy set system (Pnot'4 &,or) is chosen. If (.) then

(..) - implication - is evaluated through binary operator

: (0,1]2 _ [0,1] ; 0 = (u,v) (no (u),v)
or not

for all u,v e [0,I]

X -4 [0,1] PA'
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reprPsents type A submarines.
Evaluating the truth of sentence SZ,

Its2i = 11([If(mi(vis) e VG)] then [(ML)(not{(3t)(3x)
[(t 4 TnW)&(x V AnF III,t)])])

= =* (I(mi(vis) e VG)II,(ML)(not) Or Or
tGR XEX

11(t e TfW)&(x e AfFiii't)II)

' 0, (PVG(mi(vis)) ,
PML(4)not oT(( or(gp&(PT(t),Pw(t)PA(x)Piii,t(x)))))

tER x4X

Example 3.

S3 = "Based on very reliable sources, Ship B will soon arrive

in area II along with most of their heavily equipped carriers that
are within about 100 miles of B at present".

"Based on very reliable sources" is a modification of truth
increasing curve PR ' PR : [0,1] -* [0,1] , where compared to PML

in Example 2, we have for all x e [0,1]

x Z PR(X) Z PML(x)

This could be modeled directly or, analogous to the situation for

PVG vs , by some (perhaps exponential or translational) relation

with PML or some common base such as the identity function

id : [0,1] -# [0,1] , id(x) s x , all x E [0,1] , identified as the
truth level function.

Similarly "will soon" is a modification of "will" and thus we
may have

1+1
PWS = PW

or

Pwa = Pw(" + 6)

for some suitably chosen 7,8 > 0
"at present, within about 100 miles of" is a symmetric fuzzy
relation

PQ : D x D -* [0,1]

where D is some suitably large region of the earth's surface mea-
sured in latitude , and perhaps the shape of PW,100 could be

1 I f lx-y I 100

pQ (x,y) =f a x-y 2 100

1- , if Ix-yI > 100I
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for some suitably chosen constant a > 0
Thus, if

C(B) 4 set of all heavily equipped carriers within about 100 miles
of B at present that will arrive soon,

then letting

X 9 set of enemy ships of interest

and for each time t ,

Ar1  fuzzy set of all enemy ships arriving

in area II at time t
and

H 4 fuzzy subset of X representing heavily equipped carriers,

then for all x e X ,

PC(B)(x) = I(x e C(B):

= II(3t)((tWS) & (x 6 Ar 1it) & (x E H) & ((x,B) e Q))1

= or+( &(PWs(t)PArii't (X),PH(X),pQ(xB)))

teR

Then the (fuzzy) cardinality of C(B) is

card(C(B)) = xZx C(B)xW

Also, 
if

E(B) 2 set of all heavily equipped carriers within
100 miles of B at present,

then similarly for any x e X

PE(B)(X) = &(PH(X),pQ(XB))

and we can show, using the properties of and Por that - as a

check, as should be -

PE(B)(X) k PC(B)(X) ; all x e X
i.e.,

E(B) 2 C(B)

(one version of fuzzy subset relations). As before,

card(E(B)) = Z PE(B)(X)
XE X

Now, "most" may be considered to be represented by
1P (0,1] - [0,1] ; pM(X) = 0 , for 0 s x <

and over [-,1] , PM is monotone increasing to 12o
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Then "most of their heavily equipped carriers that are within
about 100 mile of B at present will soon arrive in area II" becomes
IPM(card(C(B)/card(E(B))).

Thus, sentence 3 has truth evaluation

I1S311 - pR(ga(P C(B)(B), M(card(C(B))/card(E(B)))))

Example 4.

S4 = "Intelligence reports that during the past month, between eight

and ten of the largest ships spotted in region I were observed
to be carrying a total of perhaps a dozen missiles, some of
which may be of class G; this could indeed lead to a world
crisis."

First let sentence S4 be broken up to the left and right of the

semi-colon as (K;L) . Clearly,
1S 4,. = J)t(11K11,,11LII1

Let

X 4 the ordinary set of all ships of interest and for each t e R

S 9the fuzzy set of all ships of interest spotted in regionSl,t

I at time t . For any X e X , suppose

PL(X) W degree to which x is large
d

f(x) = no. of missiles x is observed to carry~and
dg(x) f(x) ; g(x) = no. of G-type missiles x may carry,

f is known, while g is unknown.
Then for any integer m and x I,.... m e X

PPM : -4 (0,1]

represents the fuzzy time period "past month",

PSI (xi..... xm)

Sl(x 1 P... xm were spotted in I during the past month)11
O or R (Ia(PPM(t) I PS I't(x1), .... IPsI't (xm))) I

tGR

with corresponding ordering by size indicated by

PL(x( )) ?- PL(X(2)) . - PL(x(m))

Let
PF : ( , , , ,0 1 ,2 0 i

be the possibility function (peaking to one At 8,9,10) representing
"between eight and ten".

Similarly,

S
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P- 1 2  : {7,8,9,10,11,12,13} - [0,1]

represents "perhaps a dozen" , "Some" is represented by

Psom : [0,1) - [0,1] ,

generally unimodal and peaking to one prior to 1/2 Note that
"intelligence reports that" acts only as a truth modification on the
rest of K , and may be represented by some suitably chosen

Pint : [0,1 - [0,1]

which may be compared to the truth modifications (or intransifi-
cations) in sentences S2and S3*

Thus,

11K;1 = U1(int((3x 1).-.(3x m )  h(x1 ..... Xm) 5; X

&(x I ,..... m spotted in I during past month)

n
& (3n)(1 S n : m & (n E F) & ( Z f(x (i)) e 12)) &

i=1
n nH =Z g(x (I))/U Z f(x (I) ) )  4E Som)3)ill

i =1 i=1

- Pint(Oor ( &aPsI(X1 .... xm) I

over all
(XI  .... x_)CX,

m ? 1
n n n(°r (10,(PF(nt, P-12( XI f(x(It ), Psom ( = I g(x (i) ) ) Z  f(x (I ) M )

1: n: m

Next, note that "could indeed" is a modification of truth which
if compared with "will" and "will soon" looks like:

Swill soon

__ "could

0

Present t

Let "world crisis" be represented by

PWC : y -# [0,1)

where Y represents the states of the world which for simplicity
could be n by 1 vectors, each entry being some measure of po-
tentitial crisis such as "troop buildup in area IV", "defense
expenditures over time t,", "trade-level", etc. Then for any

1IL(y)I = Peou( G(lK, PWC (Y))
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I
Example 5.

S 5 d "For any 0 < a < 1 , let Ca be defined by F2 (Ca) = 1 - a

where F2 is the cumulative probability distribution function of

x2 (a chi-square random variable with two degrees of freedom). Then

decide H with probability v and H with probability I -

Iff A(Z) < C for test statistic A(Z) , assuming A(Z) givena

H is distributed as x 2 ; otherwise decide H with probability
0 2

one. "
The above sentence, a combination of mathematical and logical

terms may be evaluated a few different ways: Let

P< , p. : x ( - [0,1]

be the possibility functions representing the binary relations of
(either fuzzy or crisp) inequality and equality of real numbers.

For any A(z) Z 0 , let

Pd!A(z) : (Ho,H1 ) -4 [0,11

be the possibility (in actuality, probability) function correspond-
ing to the fuzzy subset "decision given A(z) observed".

Then one interpretation is:

igs S" = & 00 (P= (Ca'F I(1-a)) I))

O<a<l
Qa d .0 (0a(Q1a( (zl),Q2a(A (z)

(A (z)2o)

where

la (A (z)) (p <(A (7 ,17a) , -(P(dIA (Z) (Ho),-)

P=(PdIC(z) (H1),1-))

Q (A(z)) = (-p<(A(Z),C ) ,a(p=

2a 4*.(dA()H )O

P,(Pdl \ (z) (Hj) ,I) ))

Alternatively, if p< , p= strictly represent classical

Inequality and equality, respectively,

US11 = 11(S 5 (a,A(z)))I

0 S a* A 1,
A(z) 2: 0

I



304 Goodman and Nguyen

where for any 0 a 1, z) 0

11(S 5 (a,A(z))) = 1

iff a and A(z) are such that

C = F2
1 (1 - a) and

if A(Z) > cc, then { PdIA(z) (Ho) 0 i

i pdI )(~.= 1 -

if A(z) : C , then { Pd!A(z) (Ho) = 0

I PdIA(z)(Hl) = 1

1l(a,A(z)) - 0 ; otherwise.

Kxample 6.

S6 = "The probability that the target of interest contains on-board

many more systems of the form A than that of B is not
really very high."

Let the number of systems on-board the target of forms A and
B be represented by the joint probability (and possibility)
function

PA,B : Jo x Jo # [0,1]

where J0  is the set of all nonnegative integers.

Let "many more" correspond to

PM,M : 3o J0 -J [0,1]

where, e.g., pM,M(xx) = 0 , but PM,M(X,y) is

nondecreasing in y , etc.,
If "high" is first modeled as a truth modifier with possibility

function

PH : 0,1] - [0,1) ' PH nondecreasing,

etc., then one way to model "not really very high" is by
PNd 1-4-l a

-N1+ ; constant a > 0

Then,

S6"

= N!(Nt(3x)(3y)((x,y) e (A,B) & (x,y) e MM)f)7I
= p 4 4or (&(PA,B(x y ) ' PMM(Xy)) ) )

If & prod and Por = bndsum is chosen, then it follows

that e
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US 6 11 - pN(EX(PM,M(X))) I

where X is a random variable over J x J0 corresponding to pAB

and EX(.) is statistical expectation.

The following additional examples illustrate further the use-
fulness of general fuzzy set systems in modeling and interpreting
unertaintles in decision and estimation problems where evidence may
consist of a mixture of probabilistic and natural language infor-
mation, or only the latter. Abbreviations for fuzzy sets or
attributes will be self explanatory as much as possible.

Example 7.

II(Men are better operators than women.)11
Z (P. (lev, op(x), lev. op(y))/card(Men).card(Women)

x* Men,
ye Women

or, alternatively,

= 4 ( l 1ev. op(x)/card(Men), X lev. op(y)/card(women))
xeMen yeWomen

where
PS R x R - [0,1]

is a fuzzification of ordinary inequality or equality.

Example 8.

II(Most men are better operators than most women.)I

f ~Ms I&card(Menlv.o~ ) Is better than most women.) 1S('PMostL card(Men)

where

PMost : (0,1] -# [0,1] ; O(x) s 0 , for x : 1/2

with Most monotone increasing up to 1 after that;

card{x I x e Men & lev. op(x) is better than most women)

Z 4P (x)
xeMen (is better thani

[most women J

P (x) = (Mostcard(yly e Women & 4P(lev. op(y),lev. op(x)))}

is better[ card(Women)
than most
women

card((y I y e Women & *P(lev. op(x), lev. op(x))))

- 0 *,(lev. op(y), lev, op(x))
yeWomen

I
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zauvie 9.
II(The identities of A and B are believed to be incorrect;

most likely they should be reversed.)U1
'P&(Obelieve (& ~not")-((Ident true (A),ident past est. (A)))

' most ((P ((ident tru(A),ident pset.(B))
likely u atet

where(ident tu (B),ident pset.(A))))

ident true' ident patet:Ships injective, Names

Exanple 10.

11(I Intend to launch system C against D and E In order to
help F)UI
=11 (My intended launching of C against D and E Is to help

F)h11

Examp2le ii.

fl(Country A's ships are now widely distributed with no unusual
activities. )fl

te IR

4 usual (activ. level(ships(A))))
where

2scatter(Ships(A)) -Z dist%(loc(x),ioc(y))/(card Ships(A))
x,yeShips(A)

etc.

Anxale 12.

II(It always rains in Minnesota, according to Sam)11
= II(Very often it rains In Minnesota according to Sam)Ii
= Pv.often~ ( z raint(Minn.)/card D)

where D Sm Is some sufficiently large set of days of recording

according to Sam.

.Example 13.

11 (It sometimes rains here at night a couple of days later
following an unusually hot day)Ii
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(Psoe ( or(0&(Puualy( o,day(t) (here)),
soe tED tlt high

t ED

rain~night(t) (here) ,' couple of (t,t1))))/card(D))
days between

where D is some sufficiently large set of integers representing
days of weather reporting.

Example 14.

ii (Green flares were sighted shortly after the initial contact
which used equipment A)11

'or (&,((Pgreen (color(x), ~sight,t (system~x), 0 was(t)I
xeFlare
t , t :so

after contact

Example 15.

II (Contact with A was held for a long time)1I

= or (0&(contact,tssem t t) , was(t)))
t, t -:50

where C. is the fuzzy interval representing "for a long time

beginning at about to". Thus

(t) = 4'or (& (t) (tt + t"') '(long(t)))
t-,tso, time
t s+tIISo

Example 16.

11 (A Is continuing his search of targets in B despite heavy losses
to his vessel)I

=Por & 0search of, t Ax)oB (0x), now M
XE Targets continue

t2: 0
Oev( loss(A))))

Example 17.

itI tracked the ship for (about) 2 hours and (then) lost
contact) Ii
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tPor &(tntrackot (Iship), At$ {t)'Onot(track't"(Iship))

ttt (t")))

where At. is the fuzzy time interval from fuzzy time around t.

to fuzzy time two hours later (around t' + 2) , and thus for any t

(PAto (t) = &( (t , )@ t t + 2)) ,

S : IR x R -+ [0,1] is a fuzzification of ordinary

equality.

Bt,,t.. is the fuzzy time interval from around time

t' + 2 + t" until 0 (present). Thus, for any t

(PB t N (t) = *&( P~t' + 2 + t",t) , PS(t,O)

Example 18.

I(It is possible to stop action C)11

- Por (0&(poss(a)' stop;a,t(systemC)' will(t)))

0:5a 1,
tkO

where
hposs(a) = 0not(Pnecess(I - a))

Example 19.

U(Most likely, action C can be stopped)".

= or (&l(most (pposs (a))'stop;a,t (systemC),( will(t))).
OaSl, likely
tZ0

Example 20.

t(It is impossible to stop action C)11
= or ('P&(Onot(4poss(a))"Pstop,a,t (s y s t e m C), will(t))

OZa5 1,

Example 21.

II(A employed system B but was unable to follow the target)II

= Por0( use,t(A.,B), was(t),Pnot(Pfollow,t(Atarget))))
t&O0
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Example 22.

1I(It was stated yesterday that "because of several factors, A
will not be able to refuel at B")11

= Oor ((&(4yest(t ),pbecause( var factt(A),Onot(o (A,B)))
t:5t1:5Orefuel at,t

(Pwill(t' - t))

where
(Ovar fact,t(A) = 0several Z Ofact Jt(A)/card(J))

jeJ
and

J = set of all relevant factors.

Example 23.

I(It may be necessary to stop action C)11

= or( &(may(nece)),Ostop;a,t(system'C),Owill (t ) ))

OEa 1

tZO

I(It will be necessary to stop action C)11

= Oor ((0necess(a) 'stop;.,t(systemC)'4will (t ) ) )

Osa& I
tsO

Kxample 24.

II (We were going to do this but instead because cf condition A
we did that)I

= or (0 (do,t(we'this)'Owere (t),
ts0, going,to
tst"N0

Obecause(OA,t, (we) 'do,t. (we,that))
(Pwas(t') I Owas(t"l))),

where for all u,v * (0,1]

because(uv) 0&(OG(UV),U)
Diagramatically, we have:
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KA&m,2e 25.

Law of excluded middle need not hold here:

iI(On the whole, some small countries are both friendly and not

so friendly to strangers)1l

(on wh card(small coun. nl fr. n not so fr.)1
(o hsome Icard(small coun.)

where
card(small coun. n fr. n not so fr.)

X zonre &a(4small (PoPul(x)),lPfr.nnot so fr.(x))

(Pfr.flnot so fr.(X)

z a(Pfr(x'Y")Pnot so('fr(xIy)))
(yevist.to X

card(Vist.to x)

card(small coun.) = Z 4Psmall(POPUl(x))
xc countries

Example 26.

ii (John is tall, yet not that tall)!

= 4&(~tall (ht(John)) '(not so~ttall (ht(John))))

Example 27.

Redundancies are employed here:

1H(He is a large man; Indeed he 151)11

- &(1 arge (ht(he),wt(he)) "large (ht(he),wt(he)))

man man

.Example 28.

II(A little more than one third of the ships observed were from
country B)1!

z (Ypbe'N ()/z (osr~ (x)),O (t)))J



Symbolization and Evaluation of Language 311

where for all 0 1 U :5 1 ,

4 little more ?- /3 (u) = (Plttle( Z(u,1/3))
more

Example 29.

ii(ships are gray)II
= II (Usually ships are gray color)II
= (Pusual (z 4)Gry (color(x) )/card(Ships))

xE Ships a
where

usual = (Pmost ,etc.

Example 30.

ii(1 really want to run someday!)II

O~a:91, want
t2: 0

Example 31.

W.He cannot start the engine.)II

4note ' or (0&('Pstart a (He,engIne) ,Pbe~))

Exmle 32.

II (John, kee'p all day old eggs under refrigeration!)II

=P& (4.(Oday old (age(x)) ' & Orefrig;a (John~x) .4±mper(a))))
xeEggs

or, alternatively,

40all( z 40a 4 (age(x)),(p (John,x),(P (a))/ Z 0 (age(x))
IeEggs day old refrig;a imper xeEggs day old I.

Example 33.

II (Some balls were chosen two days ago, others, yesterday.)Ii

some xGBalls 'so2 days ago

som xEal Por &(P (X),(P (t))/card(Balls)))
some 0ealstS choose,t yesterday
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Exanyle 34.

II (All of my goats eat about three times a day)I

x*oa Goat(Me) eat about threexQ~oattimes a day
where

eat about three(x)
times a day

(n=,2.)(~st<t < :S )(~l.., )eats around about
(n1,1 .)Ot< 2  n tt 0)i,.n time t~ three

and for each I,
*(x) - (or (4)',(0 (x) , 4 (t)))

eat around Ot5 eat,t aroundt
timet10

t 0gend of day in hours, e.g.

.Eample 35.

RI(All of my goats eat very frequently each day)ll
Is the same as the above example, except for the replacement of
*Pabout (n) by * very (h) ,for all n = 1,2...
three frequently

.Eample 36.

II(A fat man who hates himself was talking to a thin one.)I

t:50 X,yeMen thatet taflk,t

Example 37.

II (John hasn't been here for a month, but Bill has.)i

&a(Oor('W&(is't(Johnhere),40< past Mt) now (t)))I

tep month

-Example 38.

tI(Larry and Luke punch each other, but Pat and Mike don't)li
0&( uc LryLk)q uc (Luke,Larry),

(Pnt(O pnc (Ptikpunh Opnc MkePt)
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Example 39.

ii (Bill asks John about himself (John))I
= 4 (Bill,John,John)
ask about

Exanple 40.

ii (Bill asks John about himself (Bill))H1
= 4 (Bill,John,Bill)
ask about

Example 41.

ii (John Is being easy to please)l

tap please,t

Example 42.

II(John's Intelligence, which is his most remarkable quality,
exceeds his foresight.)i

4(P,(O(meas(intell(Johnr)), meas(forsight(John))),

4..Amax meas(x), meas(intell(John))))
xeQIual (John)

Example 43.

ii(What Thompson said, which Smith criticized him for, is that
we should visit Bolivia)i

4&(4or(&(sa(Thompson,x)4P as ))I

Porop&(p criticize (Smith,Thompson,x0),40wa (t))))
tSo for, t

x 0 "we should visit Bolivia"

and
: (People)x(statements made at t) -* (0,1]

say, t
4i 1 or (,Pa(Ovisit,,(we,BolIvIa), should(a)

Remark.

As a final note to this section, complete truth functionaiy
has been assumed for i1-11 of the logics involved. Alternatively,
semi-truth functional logics could have been utilized, such as
probability logic. (See section 2.3.9).
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CHAPTER 3

UNCERTAINTY ME.SURES

This chapter is devoted to the study of different measures of
uncertainty. The major application of this - as will be seen later
- is to knowledge-based systems. (See Chapters 8 and 9.)

By an uncertainty measure for a given system, we mean a numeri-
cal valued function, usually in the form of a membership function or
dispersion, which reflects the degrees of certainty or uncertainty
of various objects of interest or events from the system.

In the spirit of Chapter 2, uncertainty measures, alternative-
ly, may be thought of as special cases of dispersions and may be
directly connected with formal language and semantic evaluations:
They are semantic evaluations of certain relations, whose signa-
tures, when evaluated, become the universes of discourse or
semantical domains of the uncertainty measures at hand. For
example, probability measures and related measures and their gen-
eralizations including Dempster-Shafer or Choquet capacity-type
measures all may be considered in this light. See sections 2.3.3
(C)(4) and 2.3.9.

Typically, for a probability space, uncertainty is measured by
A -: (0,1] where A S V(X) for some base space X , with A

being also a a-algebra and p satisfying the standard normalized
measure axioms (as formulated by Kolmogorov, e.g.). The higher the
value p(A) for A 4 A the more certain or "probable" A is. By
weakening (or omitting altogether) the structures on A and/or p
above, more generalized concepts of uncertainty measures are ob-
tained such as the Choquet-type measures or possibility measures,
among others. (See Dubois and Prade (51] for a summary of axiom
inclusion relations between various proposed measures of uncertain-
ty.) On the other hand, many kinds of uncertainty measures may be
derived from probability measures by use of suitable transformations
such as the logarithmic one yielding statistical information mea-
sures and in turn (through the expectation) statistical entropy.

In summary, uncertainty measures may be considered essentially
as structured dispersions, often unnormalized, as in the case of
information measures, but usually normalized or bounded as in proba-
bility measures, possibility measures, or Choquet-type measures.

3.1 Probability theories and Information theory.

The most common approach to uncertainty modeling is based upon
some form of probability theory. For an excellent treatise on var-
ious theories of probability, including Kolmogorov-axiomatic, Von
Mises' frequentist and Savage's subjective Interpretations, we refer
the reader to Fine [58]. For logical and philosophical issues en-
tailed in the application of probability theory and Its derivative
field, mathematical statistics, to uncertainty modeling, see, e.g.,
the excellent papers of Good [76], Savage (221], De Finettl (46'],
Lindley (158'].

From probability theory, the logical path to statistical
Information theory was established by Shannon [232]. Obviously,

315
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general information theory plays an important role in the theory of
knowledge. In statistical Information theory, the measure of infor-
mation supplied by probabilistic experiments is connected to the
amount of uncertainty Speciflrally, the information measu..: .s
defined as follows:

Let (a,A,P) be a probability space. Define J : A -+ R+ by;

J(A) 4 -log P(A) ; all A 6 A . II

General information theory (Kampe de Foriet and Forte [132]-
see also Gulasu (99]) is based essentially on the idea that it is
possible to define Information measures by a set of axioms. More
precisely, if % is a class of subsets of a , then a mapping

J : R + +  is called an information measure if:

(i) A,B e % and A S B * J(A) Z J(B)

(ii) If 0,n e % , then J(O) = +- , J(9) = 0

Several information measures are defined with additional struc-
tures. E.g., when % is an algebra of sets, J is said to possess
a regular composition operation F if

J(A U B) = F(J(A),J(B)) ; all A,B e ,

where U denotes disjoint union and

(a) F : R+ X -0 R + continuous,

(b) F(x,y) = F(y,x), Vxy G R+ I

(c) F(x,F(y,z)] = F[F(x,y),z] , (associativity)

(d) F(x, +w) =

(e) x < x 2 = F(x1 ,y) A F(x 2,y) , for all y e R

Note that such an F induces a topological seml-group on R+ (see,
e.g., Paalman de Miranda (201]). For example, for the Wiener-
Shannon information measure, we have

_-x -Y

F(x,y) = max (0, -c log(e c + e c)) , c > 0

If J(A) = Ip(A) where p is a measure on a measurable space1 1 -1
(n,A) , then F(x,y) ( + -!) (hyperbolic semi-group). (See

x y
also [136].)

An important class of information measures related to possibil-
ity theory (Zadeh [218]) and Choquet's capacity (Choquet [36]) is
the class of information measures of type Inf (see, e.g., Nguyen
[185], Langrand and Nguyen [151]) defined as follows:
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Let r : Q - R+ such that

inf{?(w) I e f2) = 0

Define J : V(n) - R + by:

J(A) 9inf{?(') I w 4 A)

The regular composition operation of the above J is

F(x,y) = x A y ; all x , y .

For example, (see Kampe" de Feriet and Nguyen [133]) let

f : -4 U , and for A 9 U ,

J(A) = inf{t k 0 1 f(t) e A)

It is clear that J(A) (the hitting time of A) is an information
measure of type Inf. If we extend this notion of hitting time to
multi-valued mappings, then all Information measures of type Inf

can be constructed this way. Indeed, if f : - T(U) , then

J(A) = sup(t k 0 ( U f(s)] n A 0)
0S sS t

Conversely, if J(A) = inf(?(u) u 4 A) , then J is the hitting
time of the set f(t) {u 4 U I r(u) < t)

In a narrow sense of information theory, the concept of proba-
bilistic entropy is the cornerstone of theoretical investigation of
the transmission of information over communication channels. More
generally, the uncertainty about a stochastic system can be measured
by the entropy of the random vector or random set describing the
system. When the probabilities cannot be directly evaluated but
some evidence about the system Is available, say, In the form of
expectation, or higher moments, the principle of maximum entropy (or
minimum cross entropy) (Jaynes [1233), extending Laplace's prin-
ciple of insufficient reason, can be used as a selection criterion
for constructing probability distributions. We will discuss this
principle in the context of random sets in 5.4. For an axiomatic
foundation of the principle of maximum entropy and of minimum cross-
entropy, see Shore and Johnson [235]. For the applications of the
maximum entropy, principle to statistics and statistical mechanics,
see, e.g., Kampe de Feriet [130]; see also Kullback [145').

Remark.

We present an example connecting basic set operations as formal
language descriptions, semantic evaluations, logical validity, and
probabilistic and informational change relative to Probability
Logic. (See again Chapter 2 for background especially sections
2.3.3 (C), 2.3.4, 2.3.5 and 2.3.9 (A).)

For any I,j e Var(Ob(z)) , letting

m Xa' x j

I
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(j) (fli)

and choosing any individual variables (projections) x m ( Ym

1.
(" ), recalling the specially designated function symbol for set

membership (in the general sense) (e : Ob(L) -4 Rel(L)) , consider
wff's

1d E i)~ (ai)
eI[X(1), YMi

= (Xm eM (I m

and

2 el<X(1) Zm )
2 m i m (a

Suppose that (Z4) unions hold as either an axiom or theorem
(see 2.3.4 or [172], pp. 70 - 86).

( ( • )1 m(f i)) ( n ) ) ( I) l l lm (i )  a 1i )1 =
H 7m CM H am HyPM MM m 17
d (1) (1) ) i m(i) 4

q 7( i ) or (pro) 1 6 C

is in Wffm(L) , for all I in Var(Ob(L)) , where 7 , C ,

a ( i ) , A(I) are all arbitrary individual variables of the appro-
priate types, where we define via class abstraction

7(i)UCn n I )i

Alternatively, we can use the class abstraction function symbol
{-I..) }and a natural associated tautology

I- ((AM(i) eI 1 7 (nl ) ) C

where we recall from 2.2.2,

((''') :Ob(L) x Ob(L) x Rel(L) * Ar(L))

and

( ) U n I i I 1 x j , 7)

r o (1)  1 '7)

using individual variable notation.
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In turn, this implies in a natural way

112 1 i I l (n l ),

Implicitly defining generalized subset relation S

Speclalizing these results,

y 3 cm() , (2
wm m mS m

define

= (i) CIW

- 1 or r 2

Let 11 4 C - (SET,H) , H = [0,1] be a semantic evaluation
for PL. Thus hiI is some a-algebra over X1 . some ordinary set,

with similar remarks for il , Hall = (0,1) and ta It = I ((O,} " "1) ,

by identification fixm (I) l  , 1  )fl it i ,

lI )i : limit 11If tii , are projections, where

limit = (tl itt x It121 x IIJtl)

Also, recall that lie1l : llixnD11 -* H is a probability measure,

where llixR l 1 = a(llill x 112 II) Then

pr( ) d (llXm(i)tl i~ll il ym( )It

fi 11

= ILEill (lix m( )II x Ily i i) 1)

lie 11 (fix m ( ) x (ly m e )l (..)) m xm

and similarly,

Pr(?2 ) d 1 11

l I (1x )(.)x ( Iz I())(. ))oilx (

But compatible with the definition for unions and tortl

(t ( = fl U I :I
Wm m zm
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Then

Pr (r 3 ) = (l1ix (i)1  li ii1 1w 11)I

U i n in1 ) lX 1

=Pr(r'1  + Pr(r 2) - Pr (r4 )

using the ordinary modular property of probability, noting

Pr( 4) lil (li1 x m(i) 1(- )x ((1- m (n )11 )0iiX% (1)i

Is compatibly defined, if (Z22) intersections holds if the class
abstract.'cn functIon symbol is appropriately applied, where

M & E (<X1) *1vM (1i

(See also the discussion In 2.3.4 (D) concerning the defini~tion of
set cperations.)

Thus,

Pr VP1 ),Pr( 2 ) :S Pr (V3 )

and equivalently, in terms of negative Information, defining

1(r) 9log Pr(r) =-J(r)

for any V * Wff(t),

1(7 1),1(72 ) & 1(? 3)

Note that this is equivalent to the sequents (r 1 - 73)

( 12 - 3) being valid relative to it 11 as used here, i.e.,

negative information Increase or, equivalently probability increase
on wff's Is the same as validity for PL.

Analagous results are obtainable for other set operations such
as complementat Ions, cartesian products and sums, and more general
compound set operations.
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3.2 Choquet-tye measures: Basic Properties

In this subsection, the Choquet-type family of uncertainty mea-
surer is pe-ented. The following development is based on the works
of Choquet [36], Shafer (228], Dempster [46], as well as Nguyen
[187], Goodman [90) and H6hle [116].

Let X be a fixed base space with M Q I(X) with either
closed under all finite intersections - indicated by % - or closed
under all finite unions - indicated by % U Let % denote gener-

ally either situation. Let p : % -+ [0,1] be an uncertainty mea-
snre over I for X . We say p is monotone increasing iff
V C C D e S , p(C) & p(D) and y is monotone decreasing iff

I IS

" C 9 D e p (C) 2 p(D) In addition, let ( ,* ) = (rt,U) or
- (u,n) Define for any integer n ; 1 , the Choquet operators

n
An'V n x =- [0.1] for anyJ=1

B = (B1,...,Bn) B E ,j= .... n,
1n n j

A d I ((1) card KP( n)n ,n. ,n ) :KBj *  B

v (p5 ','~ , ) p 5 B) - ~ (_,)card(K)+lP( Bn1 .. .n} 0 1,...,n) JeK

Definition:

Let p : - (0,11 be an uncertainty measure.

p is a plausibility or upper probability measure iff Vn and
Bn I 4n n U,B ) S 0 & P() 0

p is a belief or credibility or lower probability measure iff
Vn and B n 4 (pf,B n) Z 0 & P(X) = 1~n n n n

p is a doubt or commonality measure iff Yn and B n-n
n (p,U,B n) k 0 & P(O) = 1

p is a disbelief or Incredibility measure iff u(X) 0 & Vn
and B n IA (mnB n 0~n -n nn

Remark:

Following Choquet's original nomenclature [36], a plausibility
measure is a "U-alternating (Choquet) capacity of --order", a be-lief measure is a "fn-monotone Choquet capacity of --order"; a doubt

measure is a "U-monotone Choquet capacity of --order", a disbelief
measure is a "f-alternating capacity of --order".

II
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Lemma I Fix n = 2 .

If VB2  v 2 (pnUB 2 ) 0 a (X) or

if VB A 2 (pu 2 ) ] 1 0 , then

Sdecreasing
p is monotone increasing

If VB2 ,v 2 (p,U,fl,B 2 ) 1 p0

or if YB2 ,4 2(p,fl,B2)~ 
Z  0 , then

I increasing
y is monotone decreasing

Lemma 2 Fix n

If p(X) = 0 , then VB , Vn (p,n,U,B n) 0 iff VBn+I

" (p,U,B ) z 0

n+1 -n+1If p(X) = 0 , then VB Vn(p,,U,B ) : 0 iff YB

-n n ~n -+
" n+1l(p ,U ,B n + 1 ) 0

If p(0) = 0 , then VB , vn(,u,n,Bn ) 5 0 iff VB

-n n ~n -n+1
" n+1 (, 'n B n+

1 ) k 0.

If p() = 1 ,then VB n , Vn (/,U ,n,B n ) : 0 Iff VB n+1 ,

4 (p ,n ,B ) S 0
n+1 ~ n+1

Proof: : Given the form An+(p,* 0 choose

B . : Given the form Vn(p, ,-' B B 0 ,Y B
n+1 Z n-f S ~n

replace Bj by B Bn+1 j = 1,...,n , and then use Lemma 1.

Lemma 3

If p is a plausibility measure or a belief measure, it is
monotone increasing.

If p is a doubt measure or a disbelief measure, it is mono-
tone decreasing.

Lemma 4

y is a plausibility measure over iff 1 - p is a doubt

measure over %.



Uncertainty Measures 323

p is a belief measure over % iff p(C) is a doubt measure

over X -4 SL

p is a disbelief measure over % iff 1 - p(C ) is a doubt

measure over X A_ s , where

X -_ %n {X 4 B I B n S O } = (CB I B E % O } , etc.

The following theorems have straightforward proofs which
involve some messy computations.

Theorem 1

Let P be an uncertainty measure over 7(X) (class of all
finite subsets of X) or over X -4 2(X) , whichever is appropriate.
Then:

(I) p is a doubt measure over 1(X) 1ff

p(Z) I 1 & YG e 2(X) , G(i ) 2 0 , where for any C 9 G
G

()(C)) A 0mj(,U,{x ) . .{n),C)

= z (-1) card(K)P(C U K)
K9G-4C

where G 4 C = {xI ,...,x M) , x 4 X , j = ... m

(ii) p is a belief measure over X 4 (X) if f /(X) = 1 &

V G E 2(X) (2)(X -4 C)) 2 0 , where for any C 9 G
X-4G '

(2),XC} d
P ( ( A p(l,n,X-4 (x ..... X4(x ),X 4 C)XGm+1 1mZ (-1) card(K) -4 (CUK))

K~r G-4 C

(IIi) p is a plausibility measure over I(X) iff

P(O) = 0 & (G1 ) < 0 , V G e 2(X)

(iv) p is a disbelief measure over X -4 2(X) iff

V C 9 G e 2(X) p(2)((X -4 C)) 5 0
X-4 G

Theorem 2

If y is a doubt measure over I(X) , then V G e 2(X)

i) P ( ) S 1 ; indeed p() is a probability measure over

1(G) corresponding to random subset S(1) of G
G
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(ii) V C G , 0

Z () ((B)) = y(C) - Pr(C ! S; ' d (1)(C1(,(G)
CrBrG G G G C

where eC(9(G)) ( {B I C a B S G) is the superset or filter class

on C in 9(G)

In particular,

J (1)((0)) _ Z (-1)card B (B) , (1)((G)) = (G)

(() BQ G

and as a check

((1) ( ) 0)( '(G)) = p(0) = - = 0

(iii) if C 5 G1 r G2

/1(1)(HC}} d Y (1)(C G2))

G1 G 2 C 2

and more generally, for any A a 9(G 1 )

J(1)(A) = Z p( 1 )({C)) = /M 1 )(pG 1 (A) Q (G2)
G1 CeA G 1  G 2  G 1  2

pG(A) El (G2 -(C I C r G2 & C n G1  A)

G(A 2 2 1 ~
where is the standard projection: PG (A) d G1 n A (SeeP1 G1

section 4.2.)

Remark.

For Theorem 2 above and for the following two theorems, all
results involving probability measures over classes of sets may be
reinterpreted directly in terms of random sets. (See Chapter 4.)

Theorem 3

If p is a belief measure over X A 7(X) , then V G E (X)

(I) y (2 ) is a probability measure over 9(X -4 G)
X-4 G

corresponding to a random subset S(2) of X 4 G
X-4 G

(ii) v C G ,

M(2) (2) g _1, C)

X-4G(B)) = G(X 4 C) = Pr( X4 G
(X-4 G!; BQ X- 4 C)(X4CB X ) X4G( , , (O i

.(2) ( -4 G))) whereX- G X-4 C,
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t(X4G) 9 (X 4 B I B G G and P() , for any = X 4 A

A Q T(G) , is defined analagous to p I)(A)

Proof: Use Theorem 2 and Lemma 4.

Remark

Analogues of Theorems 2 and 3 for plausibility and disbelief
measures may also be established, utilizing Lemma 4. An alternative
approach to the uncertainty measures discussed above is presented in
section 4.3, where Choquet's capacity theorem is used.

Theorem 4

(1) Let i be a fixed Boolean ring. Then i is a finitely
additive probability measure over • iff p is both a plausibil-
ity and a belief measure over %

(ii) If p is a semi-distributive t-norm possibility measure,

i.e., p is a monotone and V C,D * o 0 p(C U D) = p(C) + p(D) -

O&(P(C),p(D)) , for t-norm 0. , then p is a plausibility measure.

(iii) If 0& is a semi-distributive t-norm, then for any

A I(X) p A,&(. Oa (4A W I(X) - 10,1] is a doubt mea-

sure.

(iv) If @or is a semi-distributive t-conorm, then for any

A c 9(X) ' A,or (' )  Oor (OA(x)) : I(X) - [0,1] is a plausibility
xE,(. )

measure.

(v) If & ' Oor are a DeMorgan pair with respect to

nt 1 - (.) , then PA,or = 1 - A

(vi) In general, no p is both a finitely additive proba-
bility measure and a t-norm possibility measure.

Remark.

Recall (see section 2.3.5) that a dispersion space (X,A,p)
consists of I(X) 9 A Q 9(X) and p : A -+ [0,1] , an uncertainty
measure. p can arise as simply a given function or p may be de-
rivable from an initial function such as from OA : X ' [0,1] and a

fixed function such as a t-norm (Inf, e.g.) or t-conorm (sup, e.g.)
as given above in Theorem 4 (iii), (iv). In the latter case, p may
be thought of as an extension of A with the identification

p((X)) - *A(X) ; all x e X
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3.3 Possibility and related measures.

The notion of possibility distributions was introduced by Zadeh
[281] for the analysis of situations in which the uncertainty is not
statistical In nature, especially in "humanistic" systems.

With the notation of 3.2:

Definition.

Let % Z I(X) and p : - [0,1] be an uncertainty measure.
Then p is a t-possibility measure Iff p is a monotone measure
and p(B 1 U B 2 ) = p(B1 ) + p(B 2 ) - t(p(B1),p(B 2 )) for all B 1 ,B2 e % ,

where t Is a (mutually) distributive t-norm (t = . In particu-

lar, Zadeh's possibility measure p0 (B) L sup I(x) for any B C X
xEB

and given I , where I : X -# [0,21 is any dispersion (or fuzzy set
membership function or possibility distribution function) is a

t-possibility measure, where t 9 A (min) . (See Klement [140] or
others for extensions of Zadeh's theory.) Note that the possibility
measure p0  satisfies the following property:

For any index set I , and Ai X , i Q I,

YO ( U Ai) sup {p(Ai) I i G I)
iEI

Conversely, given any t-possibility measure p the associated
possibility distribution function 1 is defined to be:

11 : X-. [0,1]p

where

11(x) -p({x) ; all x e X

When X is a topological space, a possibility measure p can
be a precapacity or even a special Choquet capacity' for example

p(A) = 1/J(A) where 3(A) = inf(+(x) I x 6 A) ; A 9 X , with

4 : X - R+ being lower-semi-continuous.
In an approach to the problem of meaning representation in na-

tural language (Zadeh [283]), the law which governs the variable V
in a proposition of the form <V is A> , A E I(X) , is defined as
a possibility distribution ff = PA , expressing the degree to which

each element x c X "belongs" to the generalized set A . It should
also be noted that, in the formulation of the concept of values for
non-atomic games, Aumann and Shapley [9] are led to consider "ideal
sets" which are formally fuzzy sets in the sense of Zadeh.

We specialize now the general formulation of conditioning, pro-
jections and interactions (see section 2.3.8) to the case where
Oa - A and Oor = v . (See also Nguyen [188].)

Recall that (section 2.3.8) if A e 9(XxY) and B e 9(X)
then the conditional generalized set (A I x e B) e I(Y) exists for
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all x e X provided sup *A(x'y) (PB(X) , Vx E X , and t-norm
ye Y

is continuous. Furthermore, denoting truth content by ii it

l(y E (A I x e B)) & (x e B)l = l(x,y) e All

i.e., assuming truth functionality,

(1) ( (Y) ' PB(X)) = OA(xy) , V x 4 X

Also, the X-projection of A is defined as

(2) projX(A)(X) = or(A(xy)) x Q X

yeY

and the two projections projx(A) and projy(A) , are said to be

non-interactive iff

(3) A = projx(A) x projy(A)

When P& = A and 4or = v , (1), (2) and (3) become, respec-

tively:

(4) l4 (y) A OB(X) = OA(xy) , V xy e X x Y(Al XEB)

(5) 4)proj (A)(x) = sup OA(x'y) , x G XX YE Y

(6) OA(X,y) = Oprojx(A)(X) A 0projy(A)(y) , V Xy E X X Y

An explicit form for ¢(AixeB)(y) is given as follows:

. A(X'y) , ff OprO x (A)(X ;t OprO y (A)(y)

1(A~xeB)) = A(xy) Oprojy(A)(Y) / OprojX(A)(X)

iff %projx(A)(X) < 0projy(A)(y )

Now let p be a possibility measure with associated possibil-
ity distribution function 1 = IP . In constrast to probability
theory, the non-interaction of variables has to be defined (as
above) directly from possibility distributions and not from possi-
bility measures. This is due to the fact that
1(A n B) = p(A) A y(B) does not imply necessarily one of the
following relations:

(I) P(A n CB) = p(A) A p(CB)

(ii) p(CA n B) = p(CA) A p(B)

(iii) y(CA n CB) = p(CA) A y(CB)



328 Goodman and Nguyen

The extension of the domain of possibility measures to include
generalized sets is as follows:

For A (X) ,

p(A) 4 sup {1(x) A (A(x) 1 x a X)

Another extension is based upon integration with respect to capa-
cities:

For A e V(X) , we have

p(A) 4 sup (Z(x) I x e A) = J p(At) dt

0

where we note p(At) is well-defined for

A. {x e X I *A(x) > t)

For the connections between dispersions or possibility distri-
butions and probability theory, via random sets, see Chapter 4.

We mention now a problem of inference using possibility theory.
Let U be a variable taking values in X with possibility distri-
bution U PA induced by the proposition <U is A> . From this

proposition, one can infer that:

Poss(U is B) 9 pu(B) = sup { A(X) A PB(X) I x a X)

This inference rule can be interpreted intuitively as follows:
For each x e X , the dirac measure 8x  is a possibility measure

with the following Interpretation of conditioning: Knowing that x
is the only possible vs'ie, the conditional possibility measure of a

f iff x G B
crisp set B is x(B) 0

0~ iff x4iB

More generally,

1 if A n B 0
6A(B) 0 If AnB=0 for any A Z X

Note that

a A (B) sup (PA(X) A 4OB(X) I x a X)

Again, it Is natural to extend conditional possibility measures to
generalized sets by the same formula, replacing A and B .

Now if U is a random variable, defined on the probability
space (2,A,Pr) , with probability distribution PU on X , and V

is a (fuzzy) variable taking values in Y depending on U in the
following way: given that U - x , the strict range of V is some
subset Tx of Y . Thus,
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1 if y a TxPoss(V = y I U =x) =C
0 otherwise

and Poss(V I U =x) T or more generally Poss(VIU) = OToU

where * is functional composition.
If we identify PU with (U,PU) and T with Poss(VIU) , we

can consider an evidence C 4 (PuPoss(VIU)) . Note that

Poss(VIU = x) is a random set in Y . It is easy to see that

Poss(VIU - x) = 0 = Tx = 0

A 9 Y , A n T x 0 0 A n Poss(V[U = x) 0

Tx X A 4 Poss(VIU = x) S A

Therefore

Pr,(A) = Pr(Poss(VIU) 9 A)

Pr (A) = Pr(Poss(ViU) n A 0 0)

where Pr, , Pr are lower and upper probabilities (Dempster (46])

associated with (a,A,Pr) and the multi-valued mapping Poss(VIU)
(See also Chapter 4, especially Theorems 2 and 3.1

The random set Poss(VIU - x) induces a possibility measure
defined by

Poss(V 4 A I U = x) = sup (Poss(V y I U x) I y 4 A}

or a random possibility measure:

I if A n TX 0
Poss(V e A I U) otherwise

Note that EU(Poss(V a AIU)) = Pr (A) where EU denotes probabil-

istic expectation with respect to the random variable U
The concept of conditional possibility measure can be used in

the analysis of evidence (see, e.g., Zadeh [282]). For example,
consider the problem of making inference about probability laws of
random variables. As before, let U be a random variable with
values in a measurable space (X,C) . Denote by D the set of all
probability densities on X . By an evidence e , we mean proposi-

tions which specify that the true density f. of U lies in some

subset D(9) of D . The subset D(8) is referred to as the con-
straint. The inference procedure consists of finding an estimate of
f. based upon the Information contained in the evidence C . As a

classical example, let X be the state space of some stochastic
system, and C is expressed In the form of a constraint on the
expectation of U , say, E(U) - a The evidence C specifies the

subset:

D(6) = (f 4 D xf(x) dx = a)
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An estimate, say f , of fo can be obtained by using the

principle of maximum entropy (Jaynes [123], see also section 5.4).
If B 4 C , we infer that:

Pr(U e B I f) = f(x) dx
B

Now if the evidence C is of the form <U is A> such that

40A is measurable, then C does not specify the true density fo
but does specify a weaker law, namely, a possibility distribution
expressed as IZU = OA and in this spirit, if B is another fuzzy

event, i.e., B 4 V(X) , with *0B measurable, we have:

Poss(U is B I C) = j(B I A) L_ p(B I 7U n OA)

sup ({A(X) A B(x) I x E X)

Relations between possibility theory and other uncertainty
measures.

First, the concept of fuzzy measures is given by Sugeno [2481]
as follows:

Let (X,A) be a measurable space. A mapping g : A -# [0,1]
is called a fuzzy measure iff

(i) g(0) = 0 , g(x) = 1 ,

(ii) A,B Q A A ! B = g(A) S g(B)

i.e., g is monotone increasing, and g satisfies the following
monotone continuity condition:

(iii) An 4 A and (A n ) T (resp.,(A n) 4) implies
n=1,2 .... n=1,2 ....

g( U An) = lim g(A n )
n=1 n-.+

(resp., g( n A n) lim g(A n ).)n n
n=1,2, .. .

Secondly, Sugeno defined a A-fuzzy (or A-additive) measure as
the mapping

gA : A [0,1] ; -1 < A < + ®

such that

(a) g(X) 1

(b) gA(A U B) 9g(A) + gA(B) + A'gA(A)gA(B) .
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(c) g satisfies condition (III) above.

It is easy to verify that (see, e.g., Dubois and Prade [51]).

(a) All probability measures are fuzzy measures.

(A) Any A-fuzzy measure is a fuzzy measure.

(7) Banon [11] has shown, the following:

Let gA be any A-fuzzy measure. Then

(i) If A t 0 , gA Is a belief measure.

(ii) If -1 < A S 0 , gA is a plausibility measure.

(iii) If A = 0 , gA is an ordinary probability measure.

(8) Kruse [146] developed an extension theorem for A-fuzzy
measures, and showed that the unique translation invarl-
ant A-fuzzy measure over C (= B[0,1]) , the a-algebra of
all Borel subsets of [0,1] , is given by

g()d 1 Vol1 (A)

(A) S .((1 + A) - 1) ; A e ,p where vol1 is Legesgue measure over [0,1]

(e) Banon [11] also showed that a (Zadeh) possibility mea-
sure is a belief measure (or a A-fuzzy measure) iff it
is a dirac (i.e., one mass point) measure.

(See Banon [11] for a summary of various relations
for uncertainty measures.)

However, as shown in Puri and Ralescu [206], In general a
(Zadeh) possibility measure is not a fuzzy measure.

Finally, note that the concept of probabilities of fuzzy events
(Zadeh [286]) is formulated in Klement [139'] as follows:

Again, let (X,A) be a measurable space, and let C be the
Borel a-algebra of [0,1] Denote o(A) the fuzzy a-algebra
generated by A , i.e.,

C(A) = {f I f : X - [0,1] I f Is A - C measurable)

A fuzzy probability measure is a mapping m : G(A) [ (0,1]
such that

(1) m(0) = 0 , m(1) = 1 (for the 0- and 1- constant

functions)

(ii) modularity holds, I.e.,

V f,g E C(A)
m(f v g) + m(f A g) = m(f) + m(g)

p
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(iii) increasing continuity holds, i.e.,

if f n Q(A) and f nt f then

m(f n ) T m(f)

If m : O(A) . R satisfies (ii), (iii) and m(0) = 0 , then
m is called a fuzzy measure in Klement's sense. It should be noted
that this concept of fuzzy measure is different from Sugeno's fuzzy
measure in general. The characterization of this type of fuzzy mea-
sures is given in Klement [139']: if m is a finite fuzzy measure,
then there exists a unique finite measure P on (X,A) and a P -
almost everywhere unique Markoff-kernel K such that:

Y f G o(A), m(f) = f K(x,[O,f(x))) dP(x)

xe X

(See also Klement, Schwyhla and Lowen [141].)

Remark.

From a semantic evaluation viewpoint, the above investigation
can be enlarged by replacing A , v by other t-norms and t-conorms.

0l



CHAPTER 4

RANDOM SET THEORY: INTRODUCTION

This chapter contains necessary background on the theory of
random sets which will be used in Chapters 5 and 6 to establish
formal connections between possibility and probability theories.

4.1 Background.

By random sets we mean random elements whose possible outcomes
are subsets of some given space. Random sets often arise in statis-
tical problems in the form of families of confidence sets. In
sampling from a finite population, a sampling design is precisely a
random set. The theory of random sets has been mainly developed by
Kendall (137] and Matheron [171].

Let (n,A,Pr) ba a probability space, and X be an arbitrary

set. Let T S 1(X) , and T be a a-algebra on T . A random set

S is aM. A - measurable mapping from (n,A,Pr) to (C,C) The

induced probability measure on (eC) is PS = ProS As in the

case of random vectors, given a probability space of the form

(C,e,PS) , id C -# C is referred to also as a random set. When X

is arbitrary, C can be V(X) , and C = o() , the a-algebra gen-

erated by S , where

SM(II') I I,' 6 (X))

where I(X) , or simply I , is the class of all finite subsets of
X , and

M(I,I') = (A G V(X) I A 2 I, A n I' = o)

When (X,%) is a measurable space, one might take C = • , and

hence e Is a a-algebra on S . In practice, X will be a locally

compact Hausdorff and separable space, e.g., Rd  and % is its
Borel a-algebra. In this topological setting, compact-convex-valued
random sets generalize random vectors (when restricting to singleton
sets). Some natural extensions of results for random vectors have
been obtained for random sets - for mostly compact-valued random
sets; other analogues remain to be established. When the base space
X is a metric space, the class of non-empty compact sets
%I - -4 (0) is a metric space with the Hausdorff distance, so that
compact-valued random sets are measurable mappings taking values in

where I(') is the Borel a-algebra of x' The fact

333
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that %' is a metric space allows us to consider weak convergence
of probability measures on %' and study asymptotic problems, e.g.,
central limit theorems. Also, the integration of multi-valued
mappings (see, e.g., Debreu [45], and section 4.4) can be formulated
so that the problems of the law of large numbers for random sets can
be addressed.

When X is locally compact, the class 9 of closed sets of X
can be topologized in a suitable way (Matheron, [171]) to yield a
compact space, and closed random sets can be defined. For these
random sets, incidence functions play the role of distribution func-
tions of random vectors. Specifically, the incidence function T,
of the random set S , a special type of Choquet's capacity, is de-
fined as follows:

To: [0,1]

TJK) Pr(S n K * 0)

(Kendall [137] uses the terminology "trapping functions".) Note
that T. characterizes an equivalence class of closed random sets
(Matheron, [171]).

In the case of (X,o(%)) , the space law

TO: 1(X) -# [0,1] defined by

TO(I) I Pr(S n I * 0) ; I e I(X),

characterizes also an equivalent class of general random sets.
In this book, we will mainly consider random sets on (W(x),

o(m)) . A characterization of these random sets will be given in
terms of probability coverage functions which are relevant to our
analysis of uncertainty (see Chapter 5). However, to compute ex-
pected measure of random sets and higher moments, since elementary
proofs are not available, we will call upon topological structures
and abstract measure theory.

The reader interested in the development of random set theory
towards statistical applications can find main references on these
issues in the bibliography at the end of the book. We will not
discuss random sets arising from stochastic point processes or geo-
metric covering problems. However, we will say a few words, in 5.5,
about randomized set estimators (and tests) because of the analogy
in spirit with the investigation we are going to carry out.

The fact that random set theory can be viewed as a too! toward
providing a unified treatment of uncertainty measures is the main
reason why it will occupy a large portion of this book.

4.2 Structure.

In this section, we study structures of random sets and their
connections with uncertainty measures. As stated before, random
sets are essentially set-valued random variables or vectors.
Ordinary random variables are singleton-valued random sets. More

rigorously, consider the following: The natural topology on (0,1)X

is 1(X) , the product topology induced by the discrete topology
over each factor space {0,1) . f(X) is a compact Hausdorff,
totally disconnected (and separable, if X is at most countable)
topology. It follows that the same properties hold for
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0(so) = ('-(V(X)) a %o I

the natural topology for power class 0 . where it is always

assumed that

0,XG% 0 r 9 (X)

A typical open set for T(X) is an arbitrary union of sets of the
form

x { (f {0 & f(xj) = aj Q Im M

xj Q X. aj {0,1), m z 1

A typical open set for 7(% o) is a union of sets of the form

0-1 (a )n = CC, n = M(C',G' -1 C')(extended)x,a ) - o C°  X-S'4C')

C, d {Xj I a 1 , j 4 Im ) S G' = {Xj I J e IM) I

where the following is defined: Let B e 9(X) be arbitrary fixed.
The superset coverage class on B , which becomes the one-point
coverage class on x when B - x), x . X ; the subset coverage
class under B ; and the incidence (or trapping) class relative to
B e T(X) , respectively:

C B (C B C e B (C 1 0 C B, C G% 0)

9B (C C A B, C 0o)

The above concepts are closely related to that of filter

classes. Indeed, relative to % 0 subset coverage classes are all

ultrafllters. (See the remark at the end of the appendix of this
section).

CB 'B ' and C B are all closed-compact for (%o) If

B e I (X) , then additionally they are all open. Define also the
special projection map

PG : 91(X) - (G) ; pG(c) c n G ; all G a J(X) , C e T(X)

Then letting

(1o) U wG( o ; G(o) _ pG ( (G)) n
G*I(X)

the first being a Boolean ring over % 0 the second a a-algebra for

each G
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'r(So 0 topw(%0 )) = a(o(%)) o(C W I x E X) 9 o(V(%0))

= o(C 1 (%0 ))

where C (So) is the class of all compact sets relative tc Y(%0)

In addition, it easily follows that CB P TB ' CB Q (i(%0)) ; all

B 4 9(X) . All the above equations and all related results carry

over to {0 ,1 )X and T(X) via the membership function .
A primitive random set (see also Wang and Sanchez [262]) Is a

mapping So , where for given probability space (a,A,Pr) and any

C W , assumed e so all x e X 0

- Z - 1 (C ) •A ; all x e Xo O (x)

Any primitive random subset S° of X can be extended

uniquely, using the above equations and standard measure extension
procedures to correspond to the complete regular Borel probability
space (with regularity involving finite coverages)

(S o °(c1 ( o)), 's s PrSo-
0 o

This extension, also denoted as S , is called a random subset of

X with range So generated by the primitive random set. Corres-

ponding to the above coverage classes, SO  generates coverage

functions (by computing probabilities of coverages).
Note the distinction between specifying a one-point coverage

function Pr(x e S0 ) = us (C(x)) as a function of x , and SO
o

itself as a primitive random set. The former In general is highly
nonunique. Thus, for any C e V(X) ,

Pr(S e CC) = ProS- (Cc) - Pr(C 9 S)

as a function of C, (S)(C), is the subset coverage function P( S )

for S In particular, for C - (x) , x a X

Pr(S a C)) = Pr(x - S)

as a function of all x e C is the one p_.±flt gmMeraU f.uctinn
AJ()((.) for S ;

-i
Pr(S e C) = ProS (C) = Pr(o * S 9 C)

as a function of C, p (1 )(C), is the superset coverage function

(s)
(S) (1) for S ;
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-1

Pr(S E Cc) = ProS (cC) - Pr(S A C)

as a function of C, p (2 )(C)) is the incidence function /(S) CS)(2)

of S : Pr(S e 9Cc) = ProS- (ccc) = Pr(S I C) , as a function of C

p 3 (C) , is the complement-Incidence function p(S((3) of S

The basic construction of random sets will now be given in
detain in Theorem 1.

Theorem I (Construction of Random Sets from Primitive Random Sets).

If S0  is a primitive random subset of X with range % 0

then S0 induces the unique probability space (% 0 C(Co(%o)), ',
0

where tS  can be uniquely extended in stages over the nested
0

a-algebras O(Co()) a (C1(%0)) r U(C 1 0(%)) , the Baire, Borel,

and complete a-algebras, respectively.

Proof:

The construction of U S  proceeds as follows:

0

(I) Define for each x e X , (Cx) Pr(S 1 (c (%0)) and more
o x {a

generally, for any C E 1(X) by

/(S )(C) (C(°) 0 Pr(S( l fCx(9°))) = Pr( n S-01 (c W (% o))).

0 5  Co 0 {) xeC {)0

Similarly, define the collection of 0 - 1 random variables

Y(So ) 9 (Vx(So))x X, through the joint probability relations,

Pr( & (V x(S ) = 1)) = J(So)(C) , C E I(X)

Note that 1(S )(C) as a function of C is a doubt measure

over 2(X) , since, for B ..... Bn G 2(X) arbitrary,

n-i 1 n-1
(S)(CB 4 j U I C BjUBn = Pr(Sl0 ( B U C B UB
0' n jl n n j n

Pr(S' n-i -
a BPr(So (C U SO (CBUB))n J=1 J n
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1n-1 -1
= 1 - Pr((n -1 SO (CBn)) UJ so (CB UB

Si )) - (-card K+1 S
= ' PrS0 CB ) 2 (_ Pr( na 0( B UBr (n , ( .... n-1) jEK j n

1 + (I card K 1Pr(So
SB 0 (CUB UB

= 4 n( (s ),U,Bn)

(II) Thus, by part (1), Y(SO) is a well-defined (consistent)

a - I stochastic process uniquely determined by P(So ) Then

there is a unique probability measure u(So) which extends V(So)

to the Baire and Borel a-algebra levels, the latter yielding a regu-
larity property, and may be further extended to the complete
o-algebra. (This is due to standard results as may be found in,
e.g., Halmos [104')

(III) By employing the fundamental one-to-one onto mapping
XJ (X) -0 (0,1) , cut down to 0 , all of these results carry0

over to S0 and a(C 0(°)) ' etc.

More specifically:

(i) Over the Boolean ring V(So),

(p 1 (A)) PMo (A) 1 (S (C) A r 9(G)
(So0) (G( = (So)G CA oG

G c 2(X) , is well-defined from properties of 1(S o) G  (see

Theorem 1). Then, using the finite additivity of U(S ) over

V(%o ) and its downward continuity at 0 (using properties of

topology r( 0 ) , V(So) is indeed a probability measure over

(%o)  (Note PG'(Aj) J = 1,..., n, will be disjoint iff all
0 G j

the A 's are disjoint collections of sets and

m
Al '...A m r g( n Gj=1

(ii) Extend u(So) up to o(C (% )) by the usual outer measure

procedure. (See, e.g., Halmos [1041]) Then, in turn, extend
up to o(C1 (1o)) % noting the regularity property associated

with O(Cl(1a)) (Again, see Halmos (104'].) However, the

last property may be improved upon by using the structure of
0(i°)
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Let A e o(C 1 (Mo)) be arbitrary. Then by regularity of

V(S ) over o(C 1 (% )) , 3 sequences of classes of sets

from S 0 ( 5 C( G A S .. A A(2) r A(, ) I whereo (1) (2)(2 () whr

C(j) 6 C 1 () and A U) 4 r() , j = 1,2,..., with

lrm T V (S (C (J) = L(S (A) - lim V (S ) (A (j) But A(j)
J0 = 0 0 (so ) 0
as an open set for r(Mo) is in the form

ajU p-Gaa , for some C 5 G e I (X) , J 1  an

arbitrary index set. Then by the compactness of say C

9 finite integer m , say, such that

C (j) S U 1 PG1 ({Cjk) By choosing j such that

(j) 9 A U(So)(C(J)) (:5 V(S )(A V )(C(j)) + 1/J we

finally obtain

V (So( )  1/js 2 J(V( (pG-l1( (CIJ V( A

0 k=1 0 k 0

u (PGj+l((C}))+ / ,

k=1 (S0 ) Pk+

yielding, without loss of generality,

(S)() n .lm L' 5 (C, ) = lim € __ -
VJS ( ) = i 4 V (So (J) jim k 2 ( (So) (PG - ( (C  } )

J-OD J'D 0 jk k

with u(A 4C(U)) < 1/j and A n C = C(J) 9 9(J) for

j =1,2 ....
In particular, for A = CC(%) , C e (X) , we can show

mj mj

9(J) = kP (G GU CG may be chosen, etc.
k=I Jk kc k=1

(III) Finally, letting (see Halmos, Theorem D, p. 239)

X V (% 0) ( A A C % & 3 A' e with A 9 A'
(s o

V (S )(A') 0) , we can let 0(C 1 (1)) = a(C1 ( 0) )

ur (0) = (C 1 (%o) U Jr (10)) , where for any
(s)(So)
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A E o(C 1 ( 0 )) and e X V () (A U V -

Remark

The following natural relations hold for any A e 3(C1(%o))

C E T(X)

"o(A ) = Pr(S e A) = Pr(S A

"(S 0 )(CC(3o)) = Pr(S0 e CC(%o)) = Pr(C 9 SO ) = P (So)(C)

In particular, for C = (x), x e X ,

(S0) (C O ) = Pr(S0 e Cx) (% = Pr(x e S )

V (S 0) x)(%o)) =(S ) ()

V(S 0) o = Pr(S0 e = Pr(S r C)

V (So) (aCo = Pr(S 0 eC(3o)) = Pr(S n C # 0)

V(S 0 )(CX-AC( o)) = Pr(So  CX0e C( o)) = Pr(S S C)

S0 = *- 1 ( (So )) n % 0

S ((x)) = PS ( x}) = Vx(So) , etc.
0

Dempster [46] first obtained the following important rela-
tions.

Theorem 2 (Dempster's Theorem [46] - Justification for the Use
of Terms Upper and Lower Probability Measures as
Alternates for Plausibility and Belief Measures.)

Let (r,q,Pr) be a given probability space with
S 0 n -P %o' OX 3 Q % 0 9(X), S being a random subset of X

thus inducing probability space (%o' '(c1(% 0)) us )
0

Then, for any f : -4 X such that f is (g,%)-measurable,
where 9 0 is a o-algebra, and f(w) E So (w), Y w -6 n , the

induced probability measure under f , Prof -1  over M satisfies
the inequalities

S (C) - Pr(0 * S0 S C) & Prof-l(C) : Pr(S0 n C 0 0)
(So () o)o

fr /a(2)(S0

for all C E 3 .



Random Set Theory: Introduction 341

Proof-:

Straightforward, see Dempster [46] for further details and re-
lated results.

Note that for C = x}, x 4 X , Dempster's inequality becomes

Pr(S ° = (x)) : Prof-1 (x) 1 Pr(x E So)

Theorem 3 (Uncertainty Measures as Random Set Coverage Functions)

Let X be a given base space with (O,X} a % 0 (X) . Then0

(1) If p is a doubt measure over 2(X) , then p can be extended
uniquely to 9(X) such that there exists a (unique) complete -
(finitely) regular probability space, i.e.,

(%of Z(C 1(%0))' us ) corresponding to random subset S of X

with range % such that for all C e 9(X)0

p(C) = Pr(S/i e CC(%o) ) = u s (C(%o))
p

(= Pr(C r S )) .

(ii) If p is a plausibility measure over J(X) , then p can be
uniquely extended to T(X) such that there exists a (unique)
complete - (finitely) regular probability space, i.e.,

(S o' l-o1 (r 1 (% 0 )), us (C')) corresponding to random subset

CS I_/ of X with range 0 such that for all C E T(X)

p(C) = Pr(C.S_/ E CC(o))

1 1 - (cc(%))

(= Pr(C n CS I_/ * 0))

(iii) If p is a belief measure over 9(X) -I 2(X) then p can be
uniquely extended to 9(X) such that there exists a (unique)
complete (finitely) regular probability space

o O(c. )(Cl()o)}, s (C% 0)- corresponding to random subset

C'S/J(c.) of X with range 0 such that for all C e T(X)

p(C) Pr(c.S (C.) E (%o))

V(c) C0o)) (= Pr(0 * C.S c C))

(iv) If p is a disbelief measure over 9(X) -I I(X) then p can
be extended uniquely to 9(X) such that there exists a (unique)
complete (finitely) regular probability space

0 0-) ) ',L-i(C. ')) corresponding to random sub-
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set CSl_(.) of X with range %o such that for all

C E 9 (X),

p(C) Pr(C.SlP(C. c C(So) )

= 1 -V (C. C(SO))

( Pr(CC n C S1_.(c.) 0 0)) .

Proof:

First consider 2(X) and 9(X) -! 2(X) , where appropriate.
For (i), since y is a doubt measure, we can replace in part (I) of
the construction in Theorem 1, (S ) by p . Parts (II) and (III)

follow, (ii) - (iv) follow by using Lemma 4, Chapter 3 in conjunc-
tion with part (1) above.

Finally, consider again (1) for the unique extension from 2(X)
to 91(X) . Cases (ii) - (iv) will follow similarly. The finite
regularity property for S0 , shown in III (ii) of Theorem 1 and the

result shown first - p(C) = US (CC),V C e I(X) , demonstrate that
0

for C e T(X) arbitrary, we should define

dP(C) = lim 4 Ip(Gk)
J-#- k=1 k

the definition not depending on the particular convergence sequence,
etc. (See also related results of Hohle [116] and Goodman [90].)

Theorem 4 (Natural Imbedding of a Random Variable as a Random Set.)

Let p be a finitely additive probability measure over the
Boolean ring I(X) U (X 4 I(X)) . Then p can be uniquely extended
to 9(X) such that there exists a unique (complete finitely regular)
probability space (9(X), 9(X)IU(0)) corresponding to random subset

Sm of X such that for all C e 9(X) ,

p(C) = Pr(0 0 S 9 C) = Pr(S n C * o)

More specifically SU  can be shown to correspond to proba-
( )

bility subspace (X, T(X), V , where for any C e 9(X)

S((x I x e C) T M(X) , and where, for any A e 99(X)

L J ) = UJ (A nl X) = P(U(A n x))

In particular, for any C
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V L(p)(cc(9(X))) = 0 iff card C Z 2 ,C 4 (X)
P(() iff C = x} , x 4 X

(Proof:

From Theorem 4, Chapter 3, p is both a plausibility and
belief measure. Then S satisfies these conditions; then use

uniqueness of constructions as in previous theorems.)

Theorem 5 (Converse to Theorem 3:) (Random Set Coverage Functions
as Uncertainty Measures)

Let X be a given base space, with ({,X) g % 0 T(X) and

S 0 me random subset of X with range % corresponding to

probability space (%Of F( I(%0 )), Us ) . Then as functions of
0

C e V(X) ,

P(So)(C) 4 S 0 (C(o)) = Pr(C 5 So)
0

V s (CC(%)) = Pr(S o n C)

0 u s (C( o) =Pr(S° nl C # 0),

Vs 0 (6X-4C(So)) = Pr( 0 St C) ;

the first is a doubt measure, the second is a belief measure, the
third a plausibility measure, and the fourth is a disbelief measure.

Proof:

Let B n= (B1 ..... n , B e 9(X), J = 1,...,n For the

first, use

n-i
0 : V S (OBn(%o) A U BjUB (% 0))n ~ n

n-i
s1 - 0 4 CB (%)) - u s o ( U C B UBn(%O))

0n 0 j=1ij n

Expand the last union in terms of intersections. Then use Lemma 4,
Chapter 3. For example, VS (CC(%o)) Is a plausibility measure

0

w.r.t. C iff 1 - u s (eC(so)) = V Cs_ (CC(So)) is a doubt measure,

which follows from the first part of the proof, replacing S0 by

Cs
o
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Remark.

Many additional results relating uncertainty measures with
random sets may be obtained. For example, Dempster's combination of
evidence operator e (see [282], [228]) can be reinterpreted In
terms of statistically independent random sets, each representing a
doubt measure. Specifically, we can let

Bel I(C) = Pr(0 * S~ i C) , j = 1,2 , C r. X ,Si, S 2

being statistically independent random subsets of X .Then

(Eel 1 a Bel 2)HC) = Pr(0 * S C I S 1 n S 2 *0)

Theorem 6 (Approximations)

Let S be a random subset of X with range % 0correspond-
Ing to probability space (%.0 ((),V (S 0) Let f :9(X) -*

be any (a(C1I(% o), D)-measurable function (0 being the real Borel

field) such that f Is uniformly bounded by, say M f * Then defin-

Ing E(f(S0))d f f (C) dv S (C) . expectation of f(S 0) in the

usual way.0
For any J > 0 3 G e1(X) such that

(i) IE(f( 0 )) -E((fop G )(HSO))[ < 2(M f + 1).l/j

(ii) noigE((fepG )(SO) f fPGJ (C)) du (S )(C)

CGE
0

f f(D) d,' (p- I(D)) =f f(D) dp(1 ) (D)

DeT(G i) ( 0 )G Del(G) (S)G

=E(f(S(
1~)

(iii) In particular, if f 4PA Iwhere A e F(c (%) 0 then

E(f(S 0)) ' V(S 0)()= P(0)e A)I

Go ) (S ) GrSS0))
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= Pr(SG1 ) A n Gj)

Note also the regularity approximations from Theorem I

Proof:

First use a form of Lusin's Theorem (Halmos [104'], pp. 242,
243) to obtain Aj a C1 (% ) witt. v(So)(t O 0 A ) & 1/j and (fA

continuous. Then consider X d {go(pG[Aj)I G a ((X),

g : 9(G) -# R) . Each g, (PGJA ) and hence go(pG) is

continuous. For * = t or (gPG1 )*(g 2 oPG2 ) =

((glop I)*(g 2oPG2 ))OPG UG 2 implying that XCj 1z an algebra
of functions including all constant functions AoPG A , A e R

Let G 1,G2  1 (X) be such that G1 0 G2 , 0 , say. Then

PG-4G 2((2)) = 0 and pG -4G 2(Gi) - GI 4 G2 * 0 . Since l(%) is

compact Hausdorff, It is normal and T 1 , the latter implying (0) ,

(G 1 -IG 2) are closed sets. Urysohn's Lemma then implies 3 g

continuous g : So [0,1] such that g(0) = 0 , g(G1 -4 G2 ) = 1

Hence (g0pG1 -1G2 )((G2)) = 0 , (goPG -4G 2)({G1)) = I , and thus Xe

is a separating algebra. Hence by the Stone-Welerstrass Theorem, 3
G a 1(X) ,gj : (Gj) -- R such that

sup If(C) - (gjoPG )(C)l < 1/j . Then for C e Aj
CGA i

IE(f(S 0 )) - E((foPG ) (So ))Ij

s f (If(C)l + If(C n C )I)dv (S )(C)
CaES -4A.4
oj3

+ f if(C) - (gjopG )(C)Idu(S )(C)

CGA 0

+ f 1(fep )(C) - (gjopG )(C)idv(So )(C)

CE A j 0C j

A (1/J).(Mr + Mf) + (1/J)-1 + (1/j).1

hemarx.

The degree of information lost by S0 approximating f may be

measured by the cross entropy, assuming X is finite, letting V =
id cowrespond to (n,A,Pr) ,whe-e
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Ent(f(V),S o ) = - Pr(f- (x) I S0 (B))ogPrf-1(x)ISo0(B)))
all xEX 1

BE 0 J

subject to the constraint

S0 Ef(X) = (SO I So 4 %(X) & f(W) e So (w ) , all w e a)

where %(X) is the class of all random subsets of X
Then clearly for any given f a -. X as above

sup Ent(f(V),S0 ) = Ent(f(V)) = 2- Pr(f- (x)).log Pr(f- (x))
S 0 %f(X) ox

occurring for So X , and

inf Ent(f(V),So) = 0
SO %f(X)

occurring for So = {fMV)} , i.e., So(w) 3 {f(w))

Remarks. Marginal and Joint Random Sets and Functions.

Let (,g,Pr) be a given probability space with So 0
a random subset of X with range % 0 r(X) .

Often, in practice, there is some index set J0  such that

n X Sit 0 #%j C V(Xj) , j e Jo 0 with

2 j = 0({ x x x% I A e gif J e J1  0 arb. finite))

0 JEJ1  jeJAJ1

where for each j J1 , 1 C() or 2 'r(%) It can be shown

that for e q , we can replace A by C {x or C C or

{C% X -4B , for x • X, Cj, B6 • e (X ) arb., j 6 J . In

addition, we may take Sk = proJk , where for any

B (B )jGJ 0 c , Be % Sj J G J projk(B) = Bk' for some fixed

k • J (In particular, if J is a singleton, say {0) , then

Q= % o  and So = id over (12,A,Pr).) We say that S k' k Jo
Is a marginal random subset of X corresponding to probability

space (%k,1 Pr S k ) , PrSk = Proprojk I 
, and (S k)keJ  is a Jo-Joint

collection of random subsets of each XJ, J e J 0

Other relations between random subsets are required. For
example, if J0= (1,2), = X2 = X and V C e T(X), C E
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2 = ) and the conditional probability measure here is well

defined, then

Pr(S 1 r S2) = EsI (Pr(S 2 Is)(S1 S 2 1 S1 ) , etc.

Let S (S ) be a J -joint family of random subsets cor-

responding to probability space ( x % gPr) as above. Let

x V(X) 9. 0(X0 ) be a given ordinary set operation such that *
jE o

j~j0

is • .,"( x} (rng(*)))-measurable for all x 4 X . Then *aoS is a

random subset of X0 , since functional inverses preserve all ordi-

nary set operations, noting X A C(x = MX4{x} , etc.

(*os) 1 ( (rng(*))) s 1 (*.-r(rng(*))) a S-1 ( * ) = a g.
j 0 1 j 0

Hence (*S)1 (o(V(rng(*)))) a e *oS corresponds to pro-

bability space (rng(*), o(V(rng(*))), Pro* -'1 )

Example 1. Let f : X1 -4 X0  be arbitrary. Let 1 be a ran-

dom subset of X1 , corresponding to probability space ( 1 1,g1,Prs ,

where Q 9(X) , 2 u(%,) is a a-algebra over . Consider

then the induced set function f 9 (X1 ) 1 9(X) Then for any:

x E O , 0 f(C (rng(f))) () Thus, if either f

is such that f-1 is at most countably infinitely valued or

CC( 1i) eg 2 e gj, g a a-algebra, then f(S1 ) will be a random
JE J

subset of

Example 2. Consider spaces x V(X) and V(Xo) , with joint
J6 J

random sets S corresponding to probability space ( j ,
OEJ

Hausdorff, etc.) topologies T(B)J G J 0 and T(rng(*)) Form

the natural product topology
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• ()= XA x je% ie J 1A r. J, J 1 arb. u

0m o J Ja I J cc o -1 J11

which is also compact Hausdorff, etc. Then if * is ( S

jeJ 00
T(rng(*)))-continuous, then it follows immediately that * is
(g, a(, (rng(*))))-measurable and hence *S is a random subset ot

X0 •

In particular, if * is a composition operation, i.e.,
Jo

3 * : (0,1) 0 (0,1) such that for any C i e(X), j e Jo0 let-

ting C d (C)Jejo' C d ((C )JGjo,

then * is also continuous in the above sense. Thus, n , u , -
A , etc., are all continuous and hence measurable operations yield-
ing in turn, n S , u S , x - S (when Jo = (0)) , all legitimate

random sets.
Specifically, note for % r T(Xj) (Xj - X1 )

n C~ W(rng(n)) = x C W (% E e j , and for Jo countably
0 

0
infinite or finite

U- C (rng(U)) = U (C ( ) x x k eWx j J 0 keJ-1 J) jE J

C- (C Wx(rng(4))) = C(C(xW(rng4-)) = X-4(x} ( r n g 4- 1 e o

All operations on random sets here can be shown to be at least
measurable, if not continuous.

Appendix

The Natural Topologies and Sigma Algebras for the Power Class and
Membership Function Space of a Given Base Space.

Let X be a given base space, (0,T(X)) 9 % 0 a(X) fixed and

recall the definitions for CC(Io) , C(%o and eC(%o) , for any

C e T(X) , and for 0 xa , for any x (xj) = (aj)jej
X' 0 0

Xj X X , aj (0,1) , j e J , as well as for the fundamental

membership mapping. For each x e X , the set (0,1)x  can be
Identified with (0,I) and is assigned the natural discrete topo-
logy Tx M T = 9(0,1) = (0,(0),(1),(0,1)) , i.e., all subsets of

1
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{0,1) are considered open relative to x . It is trivially ver-

ified that indeed T is a totally disconnected compact Hausdorff

space. Hence the cartesian product topology (or topology of point-
wise convergence), the smallest topology making all

projx : (0,1)x - (0,I) x , x 0 X , continuous, is

I(X) = top((projl (T) I x 4 X}) = {projx (9) I x 8 X)n u

(X) for all x, a, J finite) U ((0,1) X U (0))U

(OxjI(X) I x e X, J = i,...m ; m 2 1) U (0 yJ, 0  yj e X,

j nu
j = i....n ; n 2 1) U ((0, 1) U (0))

I'(X) is the natural topology for (0,11) As a product topo-
logy, it follows that '(X) is also a totally disconnected compact

Hausdorff topology over (0,I) x

Now recalling that i is a one-to-one onto mapping,

f(o ) 4 (' ( x)) n %o is a disconnected compact Hausdorff topo-

logy over 0 and is called the natural topology (or the power
0

class on X relative to % ). Note the correspondences for any

X, X1 , x 2 . ... X2o y. .... yn X

W }(So 0 (P-1(0XI(X)) n % 0

X4(x) % -i(0X' o ( X ) ) n 0
m

{x1 ,...,X 0 (x C (0) = ( ( ) n
' j=1 xj(o

m -i

X-4(Yl....y n (%o) n s X-4 (x ) ( 'Y,o o

YC .... 0Yn) (% 0 0 4 TX4(y I .... yn}

= ((P-1(0 X, a) a 0) ,

since C = 0  This also implies that all 0 , J

0 0
finite, are clopen (closed and open) and hence also compact rela--l
tive to T'(X) ; hence all P (0 ) n % for J finite, are

clopen compact,
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Note also,
-i(0x (x))fnl• =C ( I xI

a o (x .... xM} (% o) n s X1(y .... yn) (% o)

0 0

where

((xj),a ) =

o o

x )J=1 ..... m' M 1 '.....m) U ((YJ)J=1,....n' (°)J= .... m )

so 01 (-° ' 3 (x)) n % = U 0- (Oxi J J a J
0 0 0 0

m m
= U -I(xo) u n c (!o )

Thrs, in u.,,n.ary, f any r C I (X) , C (%o ) X-(0),

C (%0 ) and all finite unions intersections and complements

(relative to %0) are clopen-compact for '(%O )

As also a T1 -space (and compact), it follows that any finite

subclass of % is closed (and compact) relative to T(%o )

Furthermore, for any C e T(X) , since CC( o) = 0 xne W

CC(%) is closed and thus compact relative to I() Similar-

ly, M C(%o) is closed-compact relative to (%) , while eC(S o )

is open relative to r(%o ) , for any C 4 9(X)

An alternative equivalent approach is through projections: For
any C c I(X) , define the general projectIon mapping

PC : I(X) -# I(C) , where for any D e T(X), pc(D) d D n C Thus,

for any C 9 G e I(X)

({c)) n s= ((C) ? '(XAG)) n

C 0 n X-4 (G-4 C)o

PG= -c n( o) n P0(o0)) n = M %-1 p-1
PG)) = (GnS) n % = () =s

Go ( ) (G)

-l

PG (z) n s = 0

Now for any G e I(X)
-1 -1

PG (9(G)) n S o = G (A) n %, I A 1(G)} is a a-algebra (of



Random Set Theory: Introduction 351

clopen compact sets relative to T(%o )) over 0 , where

pG (A) = U pG (C) For any A 9(G) j = 1,2,...,
CE A

u (p~'(A .) n o  = pGi( u.A) n s
j=1 ~

n pi (.,j o  = -1l n ) 1n10

j= 0 J=1 '

- (P ( (A n) 0 )  = G 1 (,(G) : A.) n . (*)

Furthermore, W(1 0 U (p G 1(91(G)) 0 ) is a Boolean ringGc:(X)

over 0 since for any Aj c 9(Gj) G E (X), j = i.....m ,

m im m
U (P (A) n %o) = p M m ] (..,.Ai 9_ U G, A o

J=1

n(PGi(A,. n % )= ( n (A 1 9( U Ge 4 G )) n %o),

,J =1

(and equation (*) still remaining valid).
It is not difficult to see that

= top (V(1o )) = (V( o ) ) 0U) )

= top ((C (x) 0 ) I x 6 X) U (IX-4(x)(1o) I X E X) U (%o ) U (0))

= top ({CC() I C e I(X)) U {!XiC(o) I C C i(X)) U (0))

U= (CC( 0o) n %XA(G- C) ) I C r G e 2(X))

noting that for any C 1 9(X) , j e Jo. arbitrary index set,

n c C u% 0 C) no C('o = nc (% o)
J 0 Co [} i JEJo

1 0 0 jEj0

For any Aj 9 9(Gj) G E I(X) j = 1, 2, p- 1 pG 2

1ff G G and A 2 = -1
1 2 2 GG (A 1 ) '_ (G 2 ) . or vice versa with

G2 c G , etc. In particular, note
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pG1 ({G1 ) = p 1 ({C I G1 r C 9 G2 )
1 2

First consider the Baire a-algebra (Halmos, Theorem C, p. 221)

0((C }() M) I x e X) U (% 0)) = =(W( h)) = C(C (% 0) = O(Lo (% ))

where

C 0(% 0 f I A 9 % & A is compact G8  (at most countable

intersection of open sets for V(% O

dILo( o) = a(Co( 1o )) fl tr( o
t0 0) ( 0 (%0 ))nr%0)

In turn, the Baire a-algebra is contained within the Borel a-
algebra:

o( o 0 00 o
where

(A A 9 % 0 & A is compact (equivalently closed)

relative to 1(%o))

Clearly, for any C e ?(X), Cc(M), !C(%), c(%) e a ((%)

(since already, the first two classes are closed compact for r(%) ;

while the last class is the complement of a closed-compact set for
v ( % 0 ) )

Finally, using , note the analagous Baire and Borel'

a-algebras with respect to x (0,1)x = {0,1) are
XE X

0((0 j1 I x X X , j = 1,....m , m k 1) U ((0,1) X))
o([ (x I

OHO (X) I for all x,a, J finite) U ((01) x)
x a- 0

0 0

(C' (X)) = ¢(a(c o ( (X))))

where C' (X) is the set of all compact (equivalently closed) G
o6

x
subsets of (0,I) relative to TJ(X)
O(C'l(X)) = a( '(X)) = P(a(Cl(9PjX)))) (Borel a-algebra), where C 1 (X)

= class of all compact (equivalently closed) subsets of (0,i)

relative to '(X)

See also Michael [176] for basic background. For further de-
velopment of the topologies of collections of subsets, see also

Badard [9'), where also applications to uniform structures for flou
classes are given, which in turn are used in fuzzy analysis and
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extensions of fixed point theorems.

4.3 Coveraae/Incldence functions and Choquet's theorem on
capacities.

In Chapter 3, an alternative approach to uncertainty measures
was developed with enphasis on the finite case, although extended
to more general situations. In this section, Choquet's Capacity
Theorem is used.

As in 4.1, let X be an arbitrary set, and T be the spaceo

law of a random set S taking values in P(X),o( )) . Note that
T : 2(X) -# [0,1] , T (I) = Pr(S n I * 0) and T is characterized

as follows:

Theorem 7 (Matheron (171])

If T' : 2(X) -# [0,1] is a given functional, define
P (X) x I(X) - [0,1] by P-(0,I °) = 1 - T(I') , and
recursively

PI(I U (x),I') = P'(II') - P'(I,I' U (x))

then T' is a space law, i.e., T, determines a unique probability
measure on (9(X),o(0)) iff

(i) T'(0) = 0

(ii) P, Z 0

Note that Matheron's theorem is a strengthening of Theorems 3
(ii) and 5 of section 4.2.

Now, such a space law T0 defines a sequence r = (Vnn 1)

of functions as follows:
For I = {x1, x 2 P .... x n ) e I(X)

Vn(x1 ,x2 ..... xn ) = T0 (I) = Pr(S n (xI ... xn) 0)

In a dual way, we define n-point probability coverage function
of a random set S as follows:

For n 1 ,n(x,X 2 .... x) = Pr(S 2 {x1 ,x2 .... x) , we

have

(i) For each n a 1 ,0 :Xn - (0,1]

(ii) For each n a 1 , n is symmetric.

(ii) (# n,n Z 1) is decreasing in the following sense:

v n  1, Vj . n, n(Xl ..... n )  s 01(x I  ....n x, t

(iv) If X,= ... =xm m :S n , then
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nlX I ,.... xmxm+l ... X) = n-m+lXiXm+l .... X n )

(v) For each n Z I ,

z (-1) K+ 14K(X i x 2'...' X k ) e [0,1]

where the summation is taken over all integers il,i 2,..... iK

(I I k I n) such that 1 : i I < i 2 < ... < ik & n This can

be seen by observing that (r no n k 1) and (0n' n > 1) are

dually related as follows:

(a) ?n(Xi . xn) (-1)k+l k (x YX...xik
k+l 1 x i ,

(b) n(Xl .... xn) (-I) k ( X 2 ' 'Xik

Indeed, since
n

(S n (x, ..... Xn) 0 U (xi e S)
i=1
n

(S 2 {xi .... Ixn}) fn (xi e S)
i=1

therefore, by Poincare's expansion

n
?n(Xl ... oxn) = Pr[ U (xi 4 S)] =

i=1
(-l)k+Ipr[xi 4E s) n ... n(xk C S)]

= (-k+ik(Xi'',...,xk ).
(-"lf~l1 Ic

Examples.

I. Let f : X -# [0,1] be given.
Define *1 (x1 ) = f(x1 ) , and

n
# n(X ....x n ) = f(x ii=I

2. Let F be a distribution function of a real-valued random
variable Y . Then the random set S = [Y,+-) has

n
0 nl(Xil ... Ix) = F( Ai

Remark.

For f : X - [0,1) , the sequence of functions
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n
fn(X ..... Xn) = x f(xj) is similar to the one used in symmetric

i=1
statistics of infinite order (Dynkin and Mandelbaum, [53]). By
considering symmetric functions as functions defined on sets, we
define n((X l ....Xn) = r(f (x)) where the product 7r is taken

over x {xi, .... Xn)

The following form of Choquet's theorem on capacities (see
Matheron, [171]) is useful for establishing connections between
random bets and uncertainty measures. (See, e.g., Goodman [90],
Shafer [228], Hohle [116];.

Let X be a locally compact and separable space. Denote by ,
the class of closed, compact sets of X , respectively. Denote

by %(I) the Borel a-algebra of the topological space 5

Theorem 8 (Choquet [36])

Let T be a function defined on C Then there exists a
unique probability measure Pr on ( ,(F)) satisfying

Pr{F E U I F n K 0 0) = T (K), V K E X

iff T' is a U-alternating Choquet capacity of infinite order such
that 0 T'IS 1 and TI0) = 0

Remark.

For the use of Choquet's theorem, and Matheron's theorem
(Matheron [171), p. 41) in establishing a connection between random
sets and possibility distributions, see, e.g., Nguyen [187]. Note
also that the above theory essentially may be thought of as the
plausibility measure analogue of Theorem 2 or Theorem 3 of section
3.2, or as a form of Theorem 3 of section 4.2.

4.4 Multi-valued mappings and integration.

The concept of expectation of a random set S can be formally

defined if the base space X possesses an appropriate topological

structure. For example, when X = Rd one defines:

d
A + B = {x + y I x E A, y E ) , A,B r.R d

a A = ( a x I x A , a > O,A Rd

More generally, if S takes values in a separable Banach space X
with norm 11.i1 , and Borel c-algebra % , then first the random set
S will be called simple if the set of possible values of S is at

d C
most countable. Let random set S = Z B4A) with ilsil

j=1 j

Pr-integrable, so that z Pr(A )B. converges absolutely, where
J=1 J

B E 6 and A e A , for probability space (fz,A,Pr). z Pr(A. )B.
j=1
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is called the Bochner Integrel of S , noting A is the indicatorJ
function of A For a general random set S , it can be shown
that llSH is Pr-integrable iff S is Bochner integrable, i.e.,
there exists a sequence of simple random sets Sn such that

(Sn=1,2,.. - S , Pr-almost surely, and for each n , IS n 1 is
Pr-integrable and fl[S n - SIIdP(w) -# 0 , as n - + (For a trea-

wen

tise on integration of multivalued mappings, see Debreu [45].)
We proceed now to point out Robbins' formula (Robbins, [219],

p. 72) relating the computation of the expected volumn of a random
set to its probability coverage functions.

Let S be a random set taking values in C 9 B (the Borel
ma-algebra of pm) , C a o-algebra on C , and Pm or vol m  the

Lebesgue measure on R If the measure Pm (S) is a random
variable, then under suitable conditions, its expectation E(pM(S))
can be obtained as follows (by use of Fubini's iteration theorem).

Theorem 9 (Robbins [219]).

Define

g : Rm x C -# [0,1] by

f1 If x e A
g(x,A) = 0 if x 4 A =

If g is B S C-measurable, then
m

E(Pm(S)) = f w(x)dp (x)XE Rm

where w(x) 9 Pr(x E S) , x G Rm

By considering many-point coverage functions, and under suita-
ble measurability conditions, higher moments of pM(S) are obtained

as follows:

For k z I , E(p m(S) k )

1 K(xl....,xk) k ;() ll dx
Rmk

where y(I) =

kk

pio = u for i = 1,2.... ,k ,and * R() d

product measure on m
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Remark.

In the case k = 1, the measurability of g(x,A) implies that
w(x) is measurable and that ym(S) is a random variable. One can

view (g(x,.) I x E Rm) as a 0 - 1 stochastic process on the mea-

surable space (C,C) , so that the measurability condition of g is
equivalent to the fact that this stochastic process is a measurable
process. The following is a concrete situation where Robbins' form-

ula is valid: c = X , C = M(S) , i.e., S is a compact-valued random

set on Rm  Indeed, the stochastic process (g(x,-) I x e Rm) on
(%,M(C)) is measurable. That can be shown as follows: It is
enough to show that

9-l G am a

Now, viewing % as a set whose "points" are compact sets, and
defining a multi-valued mapping

r : (,(%)) - (Rm )

by

r(K) = K

i.e., r : (-,4(%)) - (xm(c)) , but the second space is considered
as the collection of all possible values of the multi-valued map-

ping in Rm  It is obvious that r is M(W) - %W)-measurable.
Next, observe that g- ((1)) = G(r) , the graph of r , defined as:

G(r) = ((x,K) f x E r(K)) r Rm x

Since Rm  is metric and separable, and r is %(%) -

measurable, it follows that G(r) e e a %(W) , Q.E.D.m

This last statement is a special case of the following theorem.

Theorem 10 (Debreu (45], p. 360)

Let X be a metric space, T its Borel a-algebra and r a
multi-valued mapping from an arbitrary measurable space (H,X) to
91(X) , with values in % (of X) If X is separable and r is
X - %(%) measurable, then the graph of r is in the product
a-algebra X e T

Remark.

If f is a single-valued mapping from V to W (Hausdorff
topological spaces), then the graph of f , defined as
((v,w) I w = f(v)) Q V x W , is closed in V x W (with product
topology) if f is continuous. But the Borel a-algebra of V x W
contains the product a-algebra a(V) ® a(W) , with equality if, in_
addition, both V and W have countable bases for their topology
(see, e.g., CourrAge [42]).
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More generally, for random closed sets, we have:

Theorem 11 (Matheron [171], p. 47)

Let X be a locally compact, Hausdorff and separable space
(with topology 7 , and Borel a-algebra denoted by a(7)) . Then
any random closed set S is measurable in the following sense: The
mapping g : X x 9 - (0,1) is o(T) a S(g)-measurable.

Indeed, let s be a countable base for the topology T Then
x * F (for F e 1) is equivalent to: there exists D e M such
that x e D and F D = 0. Thus,

g- ((o)) = U {D x 9D) De C(T) e ( )
DES

De

where 5D = (F Q I F n D = 0)

Corollary.

(Matheron) With the conditions of the above theorem, let P
be a positive measure on (X,a(T)) Then the mapping

(F e ) - p(F) f g(xF) dp(x) , from ( ,b( )) into R+ , is a

positive random variable (i.e., M(S) iS a positive random var-
iable) , the expectation of which is

E(j(S)) f Pr(x e S) dp(x)

Indeed, by the previous theorem, g is a(r) a %(I)-measurable,
hence F - p(F) is %(5)-measurable. Next, by Fubini's theorem, we
have:

E(-(S)) f p(F)dPs(F) = f f g(x,F)dPs(F)dp(x)
Fo X

f P S(F 5 1Y x -6 F)dp(x)

x4E X

= f Pr(, x e S(,) )dp(x)

XE X
Some applications of Robbins' Theorem to the problem of deter-

mining the class of random sets having given coverage functions up
to some order will be treated in section 5.4. This is also inti-
mately included with the problem of relating dispersions to random
sets.



I
CHAPTER 5

RANDOM SETS AND DISPERSIONS

In this chapter, we establish connections between random sets
and dispersions, discuss the principle of maximum entropy for ran-
dom sets, and relate our analysis to some familiar situations in
statistics.

5.1 Zero-one stochastic processes.

An alternative approach to the development of random subsets
arom primitive ones and relations between random sets and uncer-
tainty measures may be expressed through zero-one processes.

A zero-one stochastic process V is a collection of=(Vj i acolctono

random variables V. : - . {0,1) , j E 0 which are consistently

determined, i.e., if K' K" r Jo0 then the joint marginal dis-
tribution of (Vi ) jK remains the same relative to K' or K"

We can identify each V. with the probability space

Vo), ,), ), Pr(Vj = 1) = V(M) S a. , Pr(Vj = 0)
1 - a j e, j 0 o Since each such space is trivially a Polish

space (a complete separable metric space - see, e.g., Neveu [184'],
pp. 64 et passim; p. 83) then there exists a unique probability
measure V which extends all of the u.'s to two levels as fol-

Jlows in terms of probability spaces:

0Baire-level : ((0,1) o, o(C (Jo)), V)
J
0Borel-level : ({0,1) o(Ci(Jo)), V)

noting o(Co(J)) o(Ci(Jo)) For any C C G e )(Jo)

Pr( & (V = 1) & & (Vj = 0))
jEC jEG-4C

P(1)) (,card K
G(C) = Z (-1) p(CUK)

Y,a)

359I
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where P : I(G) - [0,1] is the doubt measure determined by

y(B) Pr( & (V = 1)) B S G
JE B

where here Y = (j) G ' = (a) G ; for jeC, a.= ; for

j e G -4 C , aj = 0 Further properties such as finite-regularity

and completeness of measure (at the Borel level extension) also
hold, completely analogous to the situation for 9(Jo) through the

0-mapping.
In particular, letting Jo= X

Theorem 1

Given any base space X , {O,X} 0 9(X) , and any zero-one

stochastic process V = (Vx) xx indexed by X , there is a unique

corresponding random subset S of X with range %o correspond-

ing to probability space (0 ' 1(C (Mo)), LS ) induced by the
0

always measurable mapping P-, i.e., v. = uop and
0

-1
o (o(ej(X))) n %o etc.

Remark.

The mapping (1 I SO may be thought of as a random ordinary

membership function corresponding to probability space
Jo

((0,l} 0, o(Cj(X)), u) . The above result also shows that a zero-

one process is uniquely specified by all of its joint one-values.

Theorem 2

(i) If p is a doubt measure over 2(Jo) , then p determines a

unique 0 - 1 stochastic process V = (V )jej  such that

Pr( & (V. = )) = P(C) , v C e IJ )

jEC

Indeed, it follows that for any C G e J(J 00

Pr( & (V = 1) & & (V =0)) = ((C)
jec JQG-4Cj

where (i) is defined as before in Chapter 4.Go
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(ii) Conversely, if V = (V ) jej  is any 0 - 1 stochastic pro-

cess, then V is uniquely determined by the specifications

P(C) d Pr( & (V )); C G 1(J

where it can be shown p is a legitimate doubt measure over 1(J )0

and all results in (I) are valid for p

Remark.

Thus, the class of all zero-one processes can be placed in a
one-to-one correspondence with the class of all doubt measures.

Corollary 1

Let 0& ' or be any semi-distributive DeMorgan t-norm and

t-conorm pair.
Then for any A e I(X) , the doubt measure MA,& and plausi-

bility measure pA,or = I - PCA,& we have the following properties:

(i) PA,& determines a unique 0 - I stochastic process

YA,& = (VA,&,J)jeJ such that for all C e I(Jo) 1

Pr( & (VA' &,j = )) = PA,&(C) = 0& (4A(x))
jec xec

with eq. (*) of the Appendix, section 4.2, also valid for p
replaced by /A,&' V. by VA,&, j

(ii) pA,or determines the 0 - I stochastic process

d (V ) 0 (1 V CA,&,Jj 0 such that for all-A,or A or,j jJJo(-V Ajjo

C E 7(Jo )  1

Pr( Or(VA,or,j = 1)) = PA,or (C) = 4or(4A(x))
jeC , rj ,oroJXE

5.2 One-point coverage problem.

A. Background.

Now, given any space X and any fuzzy subset A of X , there
always exist (in general, many, unless A is an ordinary set) ran-
dom subsets S of X such that S , under its one-point-coverage
function Is the same as the corresponding possibility function of
A:
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WA(X) = Pr(x e S) , for all X e X

We write:

A - S

In particular, we may choose

S = Su) , 0 ul

a nested random subset of X one point coverage equivalent to A
where U is a random variable uniformly distributed over [0,I]

If it is subsumed (and it is throughout where required) that
(a,%,Pr) is some non-atomic probability space, then such a
U : -. [0,1] , may always be chosen. (See Theorem 3.)

Or choose S = T(A) , where T(A) has a (random) membership
function

4T(A) ( T(A)(X) x e;

which may be considered as a mutual'v statistically independent

zero-one stochastic process, where

Pr(4T(A)(x) = 1) = A(x),

Pr(cT(A)(x) = 0) = 1 - PA(x)

for all x E X (See, e.g., Goodman [90], (77], [78] and Nguyen
[190].)

Conversely, it is clear that any random subset S of X
generates a uniquely determined one point coverage equivalent fuzzy
set A = A(S) by defining

PA(S)(x) = Pr(x e S) ; all x e X

Thus each fuzzy subset of a space may be represented by an entire
class of random subsets of the same space through the common one
point coverage function. This also implies that %(X) , the class
of all random subsets of X , is partitioned into subclasses of
random subsets of X , which each such class represents the equi-
valence class of all random subsets of X , all one point coverage
equivalent to a given (and arbitrary) fuzzy subset of X

Thus, we are led to the definition:
A (random set) choice function S is an injective mapping,

S : 9(X) - %(X) ; S(A) s A ; all A e 5(X)

i.e.,

PA(x) = Pr(x e S(A)) ; all x E X

Hence, Su and T are examples of choice functions.
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More specifically, Su(A) has a nested range 0 d rA(01]) I

where

rA(x) 9 APl([x,lJ) ; x e [0,11

SU corresponds to induced probability space

( A(10111) I I, AVA. A. 1 vol or A

where s is the real Borel field over (0,1] In addition, for

all C E %(X) ,

cc = rA[0'inf A(x)] MC = rA[sup 4A(x) ' 1)
XEC xC

eC = rA[O' sup OA(X)]
xeC

with evaluations

Pr(C 9 Su(A)) = inf OA(x) Pr(O * Su(A) 9 C) = 1-sup OA(x) ;
xE C _e C

Pr(Su(A) A C) = sup OA(x) , where A is the incidence rela-
xeC

tion (Chapter 3).

S U  also has the maximal coverage function among all choice

functions S :

Pr(C 9 Su(A)) a Pr(C r S(A)) ; for all A E 9(X) , C e 9(X)

In addition, SU as a mapping from the class of all fuzzy sub-

sets of any given space onto the class of all nested random subsets
of the -ame space is an isomorphism - up to the one point coverage
equivalence - between the following Zadeh's fuzzy set operations:

o = (I - () , mn, max) is the choice of the fuzzy set system -

and corresponding ordinary set operations: complements, cartesian
products, intersections, cartesian sums unions, projections, subset
relations, (defined here by ordering the membership functions point-
wise), functional and inverse functional transforms. (See, e.g.,
Goodman (88].) For example, for any f : X - Y , and any fuzzy
subset A of X ,

f(A) : Su(f(A)) - f(Su(A))

i.e., for any x e X ,

Pf(A)(x) = Pr(x E Su(f(A))) = Pr(x e f(Su(A)))

Indeed, for SU , there are even stronger relationships:
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Su(A U B) = Su(A) U S u(B)

Su(A n B) Su(A) n Su(B)

Su(proj(A)) = proj(Su(A))

Su(f(A)) = f(Su(A))

but note that although

Su(X 4 A) X -4 Su(A)

Su(X - A) = X 4 Siu(A) (+)

for all A,B e I(X)

Eq. (+) serves as a check on the prevention of the violation of the
Law of Excluded Middle for ordinary sets: For any x e X

0 = Pr(x e 0) = Pr(x e Su(A) n (X 4 Su(A)))

S Pr(x e SU(A) su(X -4 A))

= Pr(x e SU(A) n (X 4 SI_u(A)))

= PAn(X-4A) (x)

= min(PA(x), XAA(X))

= min((PA(x), 1 - (A(x)

The range for T(A) is %, = 9(x I PA(x) > 0) and

Pr(C 9 T(A)) = 7 A(x) Pr(0 * T(A) 9 C) = 77 (1 - 4PA(x))
xeC XEC

Pr(T(A) A C) = I - R (1 - A(X))
xeC

For fuzzy set system 5l = (1 - (.), prod, probsum) , T in-

duces isomorphic-like relations for complements, cartesian products,
intersections, cartesian sums, unions, projections, etc. (See [90]
and [88].)

See also the following papers for related results in estab-
lishing one point coverage representations of fuzzy sets by random
sets: Orlov [197], Wang [261], Wang and Sanchez [262], Nguyen
[187], [190], and Hohle [116], [117]. Also, Wang and Sanchez (e.g.,
[264], [2651), extend earlier work in relating fuzzy sets to random
sets by introducing the general notion of "hyperfields" to motivate
random set definitions and properties, and as well, the concept of
random fuzzy sets.

B. Flou classes, level sets and nested random sets.

With a random variable interpretation for indices, Zadeh's
early result [278], as well as, Negoita and Ralescu's extensions
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(184) of Gentilhomme's flou sets (69) (essentially a collection of
nonrandomized nested sets) may be tied in with one point random set
coverage representations of fuzzy sets via choice function SU

The choice function S U  is definable through the mappings

r A e -(X) . The ordinary set, rA(a) is often called in the

fuzzy set literature the a-level or a-cut set formed rrom A ,
ae [0,1] . As early as 1971 ([278]), rA was employed in repre-

sentations of fuzzy sets in terms of ordinary ones, via the equation

A(X) = sup (a. F A(a)(x)) ; all x E X , A e 91(X) , ($)
0<a:5 1 rA

later extended by Sugeno (248') for defining fuzzy integrals.
(Note that integrating both sides of (s) with respect to x leads
to the standard simple function representation for a Lebesgue
integral.) a-cuts may also be used to motivate techniques for the
combination of evidence.

But notice that for any outcome U

x e Su(A) iff A(X) ; U

iff x E rA(U)

iff rA(U)(X) = 1

x * Su(A) Iff rA (U)(X) = 0

whence

Pr(x E Su(A)) E(Pr (u)(X))
A

I a (a) (X) da = sup (a- rA(a) )0= A O~a:51 A

the same as (t)
Originally, in 1968, Gentilhomme (69] independent of Zadeh,

envisioned the extension of an ordinary set by the addition of Z,
zone where set membership would not be certain. Negoita and Ralescu
(184] extended this concept, called flou set, to that of an arbi-
trary collection (Aa) 0 Sa: 1 of nested sets, sufficiently continuous

with respect to the index a . A typical flou set as defined here

will be C = (Ca)aE[0,1] , where C e E(X) ,

X =C 2 C 2 C 2 .- 2 C 12 3a a 0 ,
0 a A1

with continuity condition

C(fl = flCa ;all K 5 [0,1]
aeK

v being the sup operation.
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Operations C , U , n and subset orderi'g ! may be defined
over gL(X) , the class of all flou subsets of X , by requiring
these operators and relations to hold component-wise for the flou
sets involved (in the proper order). Ralescu and Negoita [184]
first showed (replacing the unit interval range of fuzzy set member-
ship functions by a lattice L with sufficient ordering properties)
that

r g (X) . gL(X) ; r(A) = r A  q (rA(a)) ae[ ;A (X) , (#)

is a bijective mapping, which is in fact an isomorphism preserving
C u , n , and , where the fuzzy set counterparts correspond to
fuzzy set system go , with Q defined here by, for any

A,B e g(X) ,

A 9 B iff 4PA(x) : (B(x) ; all x e X

In addition, r A  (analogous to the isomorphism-like properties of

S U  also preserves functional and inverse functional transform.s.

Extensions of these relations for other fuzzy concepts, including
fuzzy groups and fuzzy dynamic systems, have also been accomplished
[184]. In a related area, Radecki [209] independently obtained
similar isomorphic relations for level set mappings. Earlier,
Goodman (1976), referenced in Nguyen [190]), in effect, replaced the
non-random parameter a in eq. (#) by the random variable U
uniformly distributed over [0,1] This has the effect of re-
placing each flou set in eq. (#) by a corresponding nested random
set, namely TA(U) = Su(A) In addition, there is an obvious

bijective correspondence between 9L(X) and X(X) , the class cf
all nested random subsets of X Before detailing these results,
it is of some importance to establish the following necessary and
sufficient conditions when a uniformly distributed random variable
may be used in terms of non-atomic pr:bability spaces and other
criteria. (See [89].)

Theorem 3

Let P = (a,T,Pr) be a probability space. Define a flou class
A = (Aa ) a[0,1] D.  0 to be a nested class of sets which are non-

increasing inclusion-wise with respect to index a and which are
continuous with respect to union and intersection relative to index
a .Then the following statements are equivalent:

1. There is a random variable U : n [0,1] uniformly dis-
tributed.

2. For any probability distribution function F over R
Lhere is a random variable V : Q- R such that V has probability
distribution function F

3. There is a flou subclass A = (Aa)ae[0,1] of In such that

for all a e [0,1]
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Pr(A a ) = I - a

4. P is a non-atomic probabiity space.

Proof.

1 implies 2: Let

V = F t(U)

where pseudoinverse F is defined by

FI (t) = inf F- (inf~x I t S x e range(F)))

whence for all t e [0,1] , x e R

Ft (t) S x iff t S Ft" .

1 implies 3: Let

-1
A = U ([a,l]) , for all a e [0,1]a

3 implies 1: For all w 6 , derine

U(w) = sup (a I a ( [0,1] & w e A a

which implies for all a e [0,1)

Pr(U- ([o,a])) = Pr(a -4 A ) = a

4 implies 3: Use, e.g., the standard result (104'), pp. 168, 174.
3 implies 4: Suppose there is an atom B e M . Then use continu-
ity of probability to obtain the desired contradiction.

Thus, from now on, P is assumed to be some fixed non-atomic
probability space, which thus may also be used to generate
(X) = (S I S : Q - 9W(X) is measurable) which will include all
random sets of interest such as SU(A) , T(A) , etc.

Let A e I (X) be arbitrary. Consider now the mapping S
without regard to the random variable U That is, define the
family of all level sets associated with A as in eq. (#):

r(A) = (#;1([a,,]))

and Lev(X) as the collection of all level families r(A) for all
A e I(X) . Operations between level families are defined component-
wise in terms of ordinary set operations at each level a , including
complements, intersections, union, subset relations, functional
transforms, projections, etc.
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Theorem 4

Let X be any fixed space and defined IL(X) as the collec-
tion of all flou classes of X : A = (A a)ae[0,11 r (X) with

A 0 = X Then

1. 'JIL(X) = Lev(X) , where for any A 6 (X)

= r(BA) , BA e 5(X) ,

where, letting U be a random variable distributed uniform (0,1]

(BA(x) = sup (a a E (0,1] & x E Aa

= eitx e U all x e X

Conversely, if A e 5(X) , then r(A) e 9L(X)

2. Let the collection of all nested random subsets of X be de-
noted by X%(X) , where it is assumed that for any S E N(X) ,
range(S) e IL(X) Then 9(X) , TL(X) , and .K(X) are all bijec-
tively related as in the following diagram:

5z L(X)
rt

91 M Range

Isomorphisms or isomorphic-like relations hold for all of the above-

mentioned operations defined over each of the three spaces.

Proof.

The only thing new to show is that SU  is surjective. Let S

be any nested random subset of X with the p rope rti
range(S) = (Aa ) aeL0,11 E (X) . Thus, there is a random variable

V : Q - [0,i] such that for all w c R , S(w) = AV() Ey part I

of this theorem,

S(W) = B1  ([V(w),I]) : all w e £
range(S)

Then letting F be the probability distribution function for V
and using the proof of Theorem 3, for any x e X ,

x E S iff V S q'B (x) iff Ft (U) S (B (x)
range(S) range(S)

iff U F(4iBrag Sx)) 1ff x 6 Su(C),
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where

Pc(X) = F(B range(S) (x)) ; all x e X

Hence, S = Su  (in distribution).

An immediate consequence of Theorem 4 is that for any
A E I(X) , there is a unique nested random subset of X, S(A) - A

namely, S(A) = Su(A) (See again [89] for further details.)

C. Additional results for the one point coverage problem.

Case I.

Let X be a finite space and A e (X) with: A : X -+ [0,1]

given.
Let S e %(X) be arbitrary, i.e., S : U -* 91(X) with

S- (C (X) E % for all x e X , where (n,A,Pr) is a given proba-

bility space. Note that S is bijectively related to

S= (s(X))xX , a zero-one stochistic process, where for any

C E '(X) ,

Pr(S = C) = Pr(PS = PC )

= Pr( & ( s(X) = C(X)
xe X

= Pr( & (4s(X) = 1) & ( & (s(X) = 0)))
xEC xEX-4C

(_,)card K
= . s(C 0 K),

for any B e T(X)

dP s(B) Pr( & ( s(x) = 1)) = Pr(B 9 S)
xe B

Now by Theorem 4 of Chapter 3, since Pr(S = ) is a proba-
bility functior. over T(X) , it follows that yS is a doubt measure

over 9-(X) iich uniquely determines S . Note the convention

PS (0) = 1

In particular, if S is constrained so that S zA , i.e.,
they are one point converage equivalent, this is equivalent to re-
quiring .' 4:!?ch x e X

Pr(pS(x) = 1) = A(x)

yielding
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Pr( S(X) = 0) = 1 - tA(X) ,

which means, for all x e X

ps(x)) = Pr(x e S) = Pr(S(X) = 1) - A(x)

Now let, for each x e X , U be such that w.l.o.g.x

Ux : R - (0,1] is a uniformly distributed random variable, and

U = (U) is a stochastic process (with all well-defined and

consistent joint c.d.f.'s). Identify the events

PS(X) = 1 iff U: - 4 A(X)

43s(x) = 0 iff Ux > A(X)

for all x e X . Thus, here

S z A.

Thus, for any B e 9(X)

/s(B) = Pr( & (U x  ( A(X)))xe B

and thus y and hence S are specified by

In particular, choose (P , any n-copula. This uniquely deter-

mines U a corresponding well-defined process, where for any

B e T(X) and constants (cx  x 4E B) cx  [0,1), xe B,

Pr( & (Ux S c x d (cx)
XeB xe B

In turn, P& yields Sa , where for any B e 9(X)

is (B) = Pr( & ((PS  (x) = I)) = Pr(B ! Sa)
& xEB &

- P-:( & (U x :5(PA(X))) = a (P~ )
xeB xeB

and hence, for any C e 9(X)

Pr(S& = C) = L (_)card K (C U K)
KX-4C &

For (P = min, U. = U , all x e X and

S& = S u(N)
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For (P a prod, all Ux 's are statistically independent, for

x e X and

S& T(A)

For (P= maxsum and n = 2 , letting X = (x1 ,x2) with

A(xl) + A(x2) : 1 , i.e., A is a deficient or ordinary pro-

bability function, depending on whether A(xl) + PA(X 2 ) < 1 or

PA(x!) + PA(x2) = 1 , respectively, it follows that

Pr(S& = (x1 ,x 2 )) = PS ((xlX 2 )) = 0 ,

Pr(S& = {x1)) = Ps({x1 }) - ps((xl,x 2 )) = OA(xl)

Pr(S& = (x 2)) = Ps({x2)) - ps({xl,x2 )) = A(X2)

Pr(S& = 0) = Ps({x1 )) - Ps({X2)) + uS((XlX2))+

1 1 - A(Xl) - OA(X2)

Thus, here S coincides essentially with the random variable

determined by OA This case corresponds to Ux2 I - Ux1

More generally, if Z 4PA(X) 5 1 , again, (PA corresponding to
xX

a deficient or ordinary probability function, S may be identified
with the random variable V , say, determined by (A ' i.e.,

S = (V)

Equivalently, for any C e I(X)

0 , if card C 2

Pr(S = C) = :A(X , if C = 0

1 - x A(x) t if C = 0
xEX

and thus (Ps(X))XEX is a disjoint 0 - 1 process, i.e., at most

only one (Ps(X) may take one in value. Of course, this implies

S : A .

Case II

Let Y Rn be arbitrary with A : Y - (0,1] given. Then

for any finite subset X of Y , construct random set
SX :n cY(X) or equivalently, zero-one process (Sx (x))xex as in
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Case I. Clearly, the entire collection (OS "X))xeX yilds all

X XEl(Y)

joint c.d.f.'s being consistent. Thus Kolmogorov's Extension
y

Theorem may be applied to yield a probability space ((0,1) , ByU)

such that all finite joint c.d.f.'s of (S x(X))Xex are marginal

c.d.f.'s relative to v , and thus relabelling, 1 9 (PS (x ) ) XEY is

Swell-defined stochastic process with joint probability measure u
and hence we may-take

-1

i.e.,

PS

as the desired random set.
In particular, any choice of infinite-copula & results in a

well-defined uniform process (U x)xE Y , each Ux  distributed uni-

form [0,1] , in turn determining a unique zero-one process
( s(x))xeY over Y and equivalently S E %(Y)

D. The one point random set coverage problem: a general
solution for the finite case.

A basic question may be posed: Given A e 9(X) , what other
random subsets 3 of X exist besides Su(A) and T(A) such that

S ; R ? Some results are given in [88), [89] where a family of ran-
dom subsets of X is obtained, which includes Su (A) and T(A) as

members, all one point coverage equivalent to a given A However,
this does not exhaust all possible such random sets. The problem of
determining all possible random sets one point equivalent to a given
fuzzy set is called the one point coverage problem. (The problem of
determining all random sets m point coverage equivalent to a given
fuzzy set ic treated in the following section.) Let

Y I(A) = (S I S e %(X) & A S}

Suppose form now on, X is any space with n = card(X) 3 aid

order all 2n sets C e T(X) by order : where if
card(CI) < card(C") then C. : C", and if card(C') = card(C")
determine an arbitrary but fixed and consistent order also. The
notation

[ = m!/((m-j)!j!) , j 0,. m = ] 0m =

a =2 -n- I
n
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will be used, and denoting vector and matrix transposec by super-
script Tr, define.

Tr = (- Tr, 2.1 Tr . (n - (n) Tr (1 by a n2 (n n[ 3 (

Cx = (c(x))CE%(X) (a n  by 1) , all x e X

card(C)Z2

(n) = Ux)x4X (an by n)

(2) (S) = (Pr(S = C)CE7(X) (an  by 1) ; all S e %(X)

card(C) 2

u(A) = (OA(X))xeX (n by 1) ; T(A) = max( Z ( A(x)) - 1, 0)
xE X

all A e J(X)

Theorem 5

For any finite space X (with notation as above) and any
A E 9(X) ,

1. T 1 (A) = (S I S e % (X) -(2) (S)E (A))

where
d

1 (A) = (W I W n is arbitrary satisfying eqs. (I) - (3))

Tr

7(A) : x(n) .W (1)
Tr

u(A) (n) .W (2)

0 a W (3)~a n
a2. ' 1 (A) is a closed convex region in R n having in general

1 + n + a = 2n  hyperplane bounds with an uncountable infinity of

possible elements -i in it, or equivalently, S E !1(A)

3. There is a bijective correspondence between %1(A) and %1(A)

where for any given W e 1(A) , S e YI(A) is uniquely determined

(in distribution) by

(2)(S(S) = W

Pr(S = 0) = 1 - Z (PA(X)) + K(n) Tr W

x X
Pr(S TrPrS x)) (pA (X) - 1 a W ; all x e X

n
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Define now the vertex set i (A) of % (A) as the set of

W e 'I (A) s::h that equality holds in eqs. (1) - (3) for an

linearly independent columns of (K (n),(n) 'Ia There can be at
n

most 2n = [2j vertex elements. it also follows that for allmos an n+l

A Y(X) :

-l

(a) Range(Su(A)) = {A ([yj(A),j]) I j =  1,..,r)

where

range((PA) = (yl(A), ... Yr(A)} 0 : yl(A) <.. <yr (A) 1

Hence,

yv(A) - yj_(A) if C = (1yj(A),l)

Pr(Su(A) = C) = for j = 1,..,r ; y0 (A) = 0

0 , for C otherwise

(2)
(2) (S (A)) 1 (A) where

Tr (2)
r(n)  (Su(A)) = ( (X)) Z r(A)

Tr (2)xT(n) (S u(A)) = P(A)

(b) Pr(T(A) = C) = Z (A(X)). (1 lA(x))
XEC xeX4C

all C E T(X)

S(2)(T(A)) e interior(% 1 (A) in general, where

Tr (2
K(n) (T(A))2= Z (A(X)) - 1 + 7 (1 - qA (x)) r(A)

XEX xEX

and

Tr (2)
Cx r' ( (T(A)) = A(x)" (1 - 1 x(l A (y))) 2 1 -A (x) all x c X

x ~yEX-4 x)

(c) It should be noted that the condition given in eq. (1) is
superfluus 

iff

Zc ( A(X)) S 1 (4)
xE X

i.e., IA is either an ordinary probability function 1equality

holding in (4) or a deficient probability function (inequality
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holding in (4) over X , in which case random set SI(A) e fI(A),

where SI(A) may be identified with a random variable over X
having (A as its probability function (possibly deficient). Thus

(S'(A)) = 0 ,~a
n

and hence 1 (2)(S'(A)) E ' 1 (A) Also,

Pr(S'(A) = I) = - Z PA(x)
X X

Pr(S'(A) = (x)) = A(X) ; all x E X

E. One point coverage functions and random intervals. [89)

An important class of random sets is the random intervals. In
this section, the one point coverage problem is specialized to the
case where base space X = R,A E I(R) , and I (A) is replaced by a

more restrictive class I(AQ) , the class of all S E Q such that

Saw A , for various classes 0 t(R) of random closed intervals of

Define first Q1 as the class of all random closed intervals

and 0 2 as the class of all random closed intervals S with

Pr(S = 0) = 0 . Then:

(1) There is a natural identification between 0 and the class of

all bivariate random variables Z = 1W] over the upper half dia-

gonal plane in R 2 , and '--tween 02 and the class of all random

variables over- From now on, let S = IV,W] denote a random
interval with V and W r.v.'s over R with marginal c.d.f. for
V denoted by F 1 , for W denoted by F2 , and joint c.d.f. by F

etc. The convention [a,b] = 0 for a > b will be used.

(2) For any A e 5(R) , S = [V,W] E II(A,0 1 ) iff

(PA(x) = F1 (x) - F(x,x) ; all x e IR

the solution which for F I and F in terms of (pA may be compli-

cated unless PA is further specified.

(3) Letting 03 be the class of all random intervals S = [V,W]

with V and W statistically independent,
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Pr(S f ) = FI(x).dF 2(x) 

xe I

and for any A e I(R) , S = [V.W C Y 1(A, Q3 ) iff

PA(x) = FI(x), (1 - F2 (x)) ; all x E z (1)

which implies that log((A) is of bounded variation with

lim @A(x) = 0
X_.±0

(4) If A E IJ(R) is such that PA is unimodal (which will Oe in

the sense that possibly a neighborhood of modal points exists ana
continuity from the right holds) at some x0  say at which

A (Xo) = 1 , then S = [V,W] E I (A0 3) where

F (x A(x) if x S xO  F r , if x S x °

1if x x2 [ 1 - PA(X) if x x

(5) Let a4 be the class of all random intervals S = [V,W] with

V and W statistically independent and identically distributed.
If A E 3(R) , then fI(A,0 4) 0 0 iff lim (PA(x)) = 0 and qA is

x- ±-
unimodal at some x with A(Xo) S 1/4 , in which case

PI (A,Q 4 ) = (S(A)) where S(A) = [V,W] is determined by solving

eq.(1) for F, = F2 in terms of A :

= (I - (1 - 4 .(A(x)) /2)/2 , if x < x0F,(x) = F2(x) = 0
2 (1 + (1 - 4.PA(x))1/ 2 )/2 , if x 2 x°

(6) Let 05 be the class of all nested random closed intervals.

Then using Theorem 2,

C5 = {Su(A) I A e 9(R) & PA is continuous and either: uni-

modal, non-increasing, or non-decreasing over R)

where as usual, U is a fixed random variable uniformly distributed
over [0, ]

Also, for any A e 9(R) with PA continuous and either: uni-

modal, non-increasing, or non-decreasing, TI(AQ 5 ) = (Su(A)) , where

it should be noted that

0
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F (-,.,Sup (A'(U)) , if qA is non-increasing
S (A) = 1

[inf (pA (U,), ,if A is ncn-decreasing

(Examples of monotone fuzzy sets include: "tall", "short",
"oid", etc.)

In a related vein, note that if PA is any prob. dist. func.

over I coresponding to random variable Z , say, then Z can be

identified with ( t' ) e Theorem 3) , Su:A) = [Z,+-) and

CA(x) = Pr(Z S x) = Pr(x e [Z,+-)) ; all x E

Two more interesting classes of random inter.als remain to be dis-
cussed.

Theorem 6

Let Q6 denote the class of all fixed length random closed

intervals. Let A e I(R) . Then I1(A,Q 6 ) * 0 iff there exists

prob. dist. func. F A and positive real constant bA  such that for

all x E X

(x) = FA(x bA) - FA(x - bA)

iff A is integrable over k and defining

r
2-bA = j A(x).dx

XE TR

and

k
FA (x + (2e + l)-bA) = . ((A(X + 2>-bA)) ; all x E [0, 2bA] ,

k = 0 ±1, a2... .

F is a legitimate prob. dist. func., in which case
A

11(A,Q 6)= (S(A)) , where

S(A) = [V - b, V + b

where V is a random variable having prob. dist. func. FA
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Theorem 7

Let 7  denote the class of random closed intervals of the

form S = [V - W i , V + W 2 ] , where V is a random variable over R
statistically independent of random variables W and W 2  jointly

defined over R+ X R+ Then for any A E

f I (A.Q7) 0 iff

PA fA * GA

where f A : R -[0,1] is unimodal at 0 with f = (0)

lim (fA(x)) = 0 , GA  is some prob. dist. funct. over R , and
x-tw

denotes the convolution operator; in which case,
S(A) = [V - W1, V + W 2 ] E fI(A,0T) where V has prob. dist. func.

GA  W has prob. dist. func. 1 - A -. ) over R+ , W 2 has prob.
+

d2st. func. I - fA (.) over R , with W 1 I W2 jointly arbitrary

and statistically independent of V
It follows that any A e 9 (R) for which q)A is uniformly

continuous and integrable over R may be arbitrarily uniformly
closely approximated, in the one point coverage sense, up to some
scalar multiple, by some S in 7 (Approximate PA by

c"f G , where c = c /((2w) 1/2") Co = { A(x)dx

f =(2 'r 1/2.o~* , f being the probability density function for

2
Gaussian distribution N(O,o ).)

The construction of such an approximation (given in [85]),
f * G to B ' thus yields the approximation desired one-point-

coverage equivalent closed random interval S e 7

On the other hand, the exact solution (if it exists) of the
convolution equation

PB = f * G

for some f and G as above for I7 can entail difficulties,

which may be alleviated to some degree by use of the characteristic

function transform ch(g)(S) = f eiSXg(x)dx, etc., which converts

xE IR
the above equation to

ch((PB) = ch(f).ch(G)

Also, solutions of these equations may be related to unimodal infi-
nitely divisible distributions, but we leave this for future wuik.
(See also, Lukacs [161).)
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Lastly, we wish to indicate connections between random inter-
vals and interval mathematics in general (see, e.g., Nickel [1942)
could be explored further in relation to dispersions.

F. A connection between fuzzy sets, random sets and random
variables

So far in this paper, connections have been established between
the membership functions of generalized sets and the one point
coverage functions of random sets. Recently [86], [89] it has been
shown that random variable evaluation functions may also be directly
related to membership functions and one point coverage functions.
This result is restated.

If Y is any space of elementary events and % 9 9(Y) is any
collection of compound or elementary events for random variable V
over Y (i.e., % 9 A , the a-algebra over Y for V) , the func-
tion gv : % -# [0,1] where for any B e % , g(B) = Pr(V E B) , is

called the evaluation function for V over event collection %
Recall the notation f as the one point coverage function for any
S e %(X) for any space X

Theorem 8

1. Let X be any space and S E %(X) Then X may be identi-
fied as a collection of events % for some random variable V over
say Y such that

S=C(V) ()

and whose evaluation function over % is the same as fs

2. Let V be any random variable over, say, Y with % any col-
lection of events for V . Then letting X = % and defining S by
eq. (1), evaluation function gV for V over s and fs both

coincide.

3. Let X be any space and let A C 9(X) be arbitrary. Let
S E %(X) be arbitrary with S E 1 (A) such as Su(A), T(A) , for

example. Then applying part 1 above, X may be identified as a
collection of events % for some random variables V over say, Y
such that eq. (1) holds and PA ' fs I and g all coincide. That

is, any fuzzy set is one point equivalent to the evaluation function
of suitably chosen random variables over event collections.

Proof and constructions for Parts 1 and 2:

1: First, suppose that S CZ - 1(X) is a random set relative to
initial probability space (a,9,Pr) and induced probability space

-l
(range(S),%,ProS ) , range(S) 9 T(X)

Now,
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9(S) (C (x}(rng(S)) x E X)

= (C (rng(S)) I x e X} Q B

where X' ; X is chosen so that the mapping 1 : X' - q(S) is
bijective, where for any x e X'

iPix) d C(X) (rng(S))

Clearly,

X(S) d ,,B} I B e rng(S))

is a disjoint exhaustive partitioning of rng(S) with unique repre-
sentation

C (x(rng(S)) = U {B)
Bee (x)(rngS)

for each x e X, Thus (S- ((B)) I B e rng(S)) is a disjoint
exhaustive partitioning of al

For each B E rng(S) , let

VB : S 1 (B) YB

be any surjective random variable for non-empty arbitrary measure
space (YB,AB) such that all YB's are disjoint. Then define

Berng(S)

and define random variable

V : a - Y

where for any w e n , there is a unique B(w) e rng(S) such that

S 1 (B( ))

and hence

v(W) g V (w) W= VB(w)

is unambiguously defined, and without loss of generality V may be
assummed measurable.

Define the mapping A : X' - T(Y) by, for any x e X,

-d -1IX d v(S- (C M)(rng(S))))

= (x YB
BeC X}(rng(S))

(xlI
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Then it follows that A is injective and for any x Q X'

V I(x) = S-(C (x)(rng(S)))

which is equivalent, for all w e a

S(W) = C(V(M))(x)

and which implies, for all x E X,

Pr(V (x)) = Pr(S (C (x (rng(S))))

i.e.,

gV(x) = Pr(V e x) = Pr(x e S) fs(x) all x E X,

Hence (1) holds with S identified with S and X =

2: Let V : a - Y be a random variable for measure space (Y,%)
Then eq. (1), which is the same as

S(W) = C{V(w)) ; all w e 2

is equivalent to

V-1 (x) = 1 (C (x (rng(S)))
and hence

gV(x) = fs(x) ; all x e X'

One consequence of Theorem 8 is a new interpretation for possi-
bities or equivalently, values A(X) , for x e X , where A e 5(X)

is given through membership function 4 A : X - [0,)

For any x e X ,

Possibility of x E A = Poss(x e A)

= Pr(x e S(A)) = Pr(V(A) e x)

and since the events x E X can also be considered compound or
elementary events for V(A) over Y which may well be overlap-
ping and perhaps exhaustive, possibilities need not sum to unity
when X is discrete. However, when - and only when - (A is an

ordinary or deficient probability function, possibilities will sum
to unity or to less that unity, possibilities and probabilities
coincide, and the events for V(A) are all necessarily elementary
and disjoint, with V(A) and S(A) also being identifiable.
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5.3 Multiple point coverage problem [89).

A. The multiple point random set coverage problem.

For any integer m 2 1 , define 9,(m)(X) as the collection of

all non-vacuous subsets of X with cardinality : m Then define

Wm)(x) (f I f : (m)(X) - [0,1] &

there is an S e %(X) such that
f(C) = Pr(C 9 S) ; all C e Y (X))(in)

(f I f : m(X) [0,1]) ,

with, in general, strict subset inclusion holding above. That is,
there are functions f : 9(m) , [0,1) which are not the m point

coverage function of some random subset of X . A simple example of
this is generated for the case m = 2 by first noting the basic
constraints for any random subset S of X and any
Xy 6 X

max(Pr(x e S) * Pr(y e S) - 1,0) : Pr(fx,y) S)

S min(Pr(x e S), Pr(y e S))

and then choosing, e.g., any such f with at least some x,y e X
such that

min (f((x)),f((y})) < f({x,y))

This situation contrasts sharply with the case m = 1 where indeed

J(X) = 5( 1 )(X) = (f I f : 9( 1 )(X) - (0,1])

abusing notation somewhat in identifying A with A ' for any

A e !I(X)
In the following discussion, X need not be finite nor even

discrete. CleArly,

(1) (x) 2 g(2 ( ) '1( )( ) ... 2 9 X) n 7 ( ) )

J=1

and if for any f e I (X) ,

(m) (f) = (S I S % !(X) & f(C) = Pr(C 9 S) all C E 9(m) M )

then

Yl~f) = (1) (f) 2 Y (2) (f) . . ( ) f
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Letting 7(X) be the class of all finite subsets of X

(1 )(X) = (f I f : (X) 0,1] &

there is an S e %(X) such that
f(C) = Pr(C 9 S) ; all C E I(X))

Define also for any f e 9 (X) ,

if ( )(f) = (S I S E %(X) & f(C) = Pr(C Q S) ; all C e I(X))

Then gathering all of these definitions tcgether yields the follow-
ing theorem:

Theorem 8.

For any space X

1. () (X) is the class of all doubt measures over 2(X)

2. For any integer m 2 I , %(X) is disjointly partitioned as

f( (X)
(m)

3. For f e ()(X) , there is a unique Sf e %(X) such that

Y (-)(f) = (Sf) I

with the converse, for each S E 1(X) determining the coverage
function fs by

fs(C) = Pr(C 9 S) ; all C e 2(X)

4. 9l(-)(X) , %(X) , and 7(X) , the class of all zero-one stoc-

hastic processes over X , are all in a bijective relationship as in
the diagram:

1(X)

(X) 7 (x)

p
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where for any S e %(X) , i(S) = ((Cx))xEX and is determined

by the Kolmogorov Extension Theorem applied to the relations in 5.

5. For any V = (V(x))xeX e r(X) and any C,D e 7(X) disjoint,

Pr(( & (V(x) = 1)) & ( & (V(x) = 0))) = . ((1)card(K).fv(CUK))
xeC xED K-D

where fv e ()(9 ) is given by, for any B e I(X) as

fv(B) = Pr( & (V(x) = 1))
xe B

Thus in terms of degree of coverages, 5(X) and %(X) repre-
sent opposite extremes.

Returning to the case for X finite, let m ? 1 be arbitrary
fixed with card(X) = n > 3 . Define for any S e %(X), recalling
the total order defined over T(X)

(m+l)(S) = (Pr(S =C))Ceq(X) (an,m  by 1)

card(C)Zm+l

n
an,m

nm k=m+l

CB'j(X) = (C I B 9 C E 91(X) & card(C) = j)

all C ? e (X) ; 0 s j S n

Also, define for any n ; m 2 r,s Z 0 and all f e I (X) and

C e c(X) , card(C) r ,

r,o (fC) f(C) for s= 0

s

Lr (f,C) = flC) + ((-I t  (f(B))) 1s 1
rs 

t=1 BeeC,t+r

= iff j is even
< :5 iff j is oddj

Theorem 9

For any finite space X , with notation as above, for any
f m)

1.

S()(f) = (S I S E 1(X) & (m+1) 5 C) ( fS)
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where

a
(M) (f) = (W I W e R n,m is arbitrary satisfying eqs. (*),

(**) below)

(-),j n _ t-m+j-r]
(-~~ fC) I(WB) d S

(- m-j'jl C) < J tm+l ]-BECC t(X)

all C e 91(X) with card(C) = m - j, for j = 0,1,2 .... m

WB 2 0 ; all B e 91(X) with card(B) 2 r. + 1 (**)

all f E 9 (X) ,(in)
a

= ~ ~ n,mw = (W B)Be9(X) G Rnm

card(B)- m+l

a
2. 9 (M)(f) is a closed convex region in Rnm having, in gener-

m
al, an, m + z t 2 hyperplane bounds, and thus, in general,

t=0

there is an uncountable infinity of possible (m+l)(S) in it or
equivalently S e T (f)

3. There is a bijective correspondence between I (M) (f) and

(M) (f) , where for any given W E %(M) (f) , S : (M)(f) is uni-

quely determined by

It (m+l) (S) - , n

Pr(S = C) v Lrnj (f,C)+(-1) J + l . t-r+i-]. (WB)
,-j'j t=m+l J BeeCct(X)

for all C e 91(X) with card(C) = m - j , j =

Outline of proofs for Theorems 4 and 9.

First obtain Theorem 4 by simply extending the basic identity
JA(x) = Pr(x e S(A)) in terms of Pr(S = C)'s together with the

standard probability constraints and solve in terms of -i(2) (S)
Theorem 9 is obtained by tedious induction. The key computational
identity useful in the proofs is
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( ~ (f (D)))=[~ (f(D)
BeCc~k(X) DeeBiM) DECC.J(X)

for any f 91(X) - R ; j ; k t , and any C e Y(X) with
card(C) =

Remark.

In Chapters 3 and 4, explicit relations were developed between
random sets and uncertainty measures in terms of subset coverage
functions for doubt measures, superset coverage functions for belief
measures, and incidence functions for plausibility measures. Thus,
a restricted form of the multiple point coverage problem (obviously
including the one point coverage problem) where multiple point cov-
erages are given in terms of a doubt measure of sets of multiple
points is solved by construction of a random set as given in Chap-
ters 3 and 4. In the multiple point coverage problem) discussed
here, no restriction in general (except to allow some random set
representation) is required on the coverage function.

Recall (see Chapter 3.3) that Zadeh's possibility measure is a
special case of a semi-distributive t-norm possibility measure,
where the t-norm is min. (See Theorem 4, Chapter 3, where these
possibility measures are related to random set coverage and inci-
dence functions.) In the same spirit of Theorems 2 and 3 (see also
the following remark) of Chapter 3, a reliation may be established
between Zadeh's possibility measure and random sets, by direct use
of random set theory (A la Matheron):

Proposition 1

Let rf be a possibility measure on X , with possibility dis-
tribution function f Then there exists a random set S on X
such that:

V A 9 X , 11(A) = sup (H(I) I 1 9 A, I E I(X))

with H(I) = Pr(S n I * z)

Proof:

It is clear that the restriction of 17 to I(X) is a space
law, and hence by Matheron's theorem (171], there exists a unique
probability measure Q on (9(X),M) such that:

V I e I(X), 17(1) = Q(A I A n I * 0)

Let S be a random set with Q as probability law, i.e.,

* (I) = Pr(S n I A z) , v I e I(X)

The result follows from the fact that

0l
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V A 9 X , N(A) = sup (9I1), I 9 A, I e I(X))

A similar result for the topological setting is:

Proposition 2

Let X be a locally compact and separable space, and
f : X - [0,1] upper-semicontinuous (u.s.c.). Then there exists a
random set S on (3,0(9)) such that:

V A 9 X , H (A) inf (9 (G) I A 9 G, G e

where 1(A) = sup (f(x) x e A } , and

1(G) = sup {Pr(S n K 0) I K eg , K 5 G)

Proof:

First, let us show that there exists a unique probability mea-
sure Q (n (9,o(3)) such that

VK e XC, 9 (K) = Q{F I F n1 Kx 0

By Choquet's theorem, it suffices to verify that 27 is a Choquet
capacity, alternating of infinite order. The fact that 27 is al-
ternating of infinite order is obvious. Now let K n  , n !

and K e X such that K I K . Let a = inf N(Kn) andj3 =11(K)nn

It is obvious that p3 S a . Now let e > 0 , and set
8 = a - e < a . It follows that Vn Z 1 , (Kn) > 6 , i.e.,

sup (f(x: I x e K n} > 5 , Yn a I

Hence: A n (x e X j f(x) ? 8) n K n 0 and since by construction,
n n

V n 1 A n K c K (compact), and the A ns are closed (since fnfl n n 1 n
is u.s.c. by hypothesis), we have

d+
A =n A 0.

n=1 n

Now A K ;we have 11(A) :S 1(K) = p But, by construction, of
the A 's , 77(A) Z 8 thus, 8 S / , therefore a = A3n

Finally, since X is locally compact and separable, any Borel
set A is capacitable, i.e.,

M(A) = sup {9(K) j K G X, K 9 A)

in particular, for A e G Let S be a random set on (9,a(9))
having Q as probability law,
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M1(K) = Pr(S flK e ) , Keg .

The approximation of ff(A) , for A - X , from 71(G) , G E g and

G L A , is the usual extension of capacity.

B. Multiple point coverage functions and Higg's topos.

Lemma

Let X = (0,I) x (0,I) and P be a given bivariate proba-
bility function over X . Denote the x - and y - marginal
probabilities of P , respectively, by

PI P(ll) + P(1,0)

P2 = P(1,1) + P(O,1)

Then

{q I q is a probability function over X such that
the x- and y- marginal probabilities of q
are the same as that for P)

q I - min(P(l,l), P(0,0)) : E 5 min(P(i,0), P(0,1), P(i,1))

where for any such e ,

q C(i'') P(i'j) + (-l) i+j' e

for any (i,j) e X

For any such q in particular,

qe(ll) P(1,1) + e

Application:

Consider a random subset S of a space Y and its local be-
havior at two fixed subsets of Y : (x,y) and (xl,y') Now the
local behavior of S at any point z E Y may be identified with a
marginal zero-one random variable V Z = (s(Z) , where (S is the

random characteristic function induced by S Thus,

V Z = 1 iff Z e S

V Z = 0 iff Z f S

Hence, we may define
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Pr(x,y e S) = Pr(Vx = 1, VY = 1)

Pr(x e S) Pr(Vx 1)

Pr(y 4 S) Pr(V = 0) , etc.

Thus by choosing S such that

Pr(Vx =I, Vy = j) =q (i~j)I

for any fixed e as above, in general,

Pr(x e S) = Pr(x' e S)

Pr(y e S) = Pr(y' e S)

but

Pr(x e S, y eS) =Pr(x' eS, y' eS) + e

*Pr(xl e S, y' e S)

in general.
Hence, in general, it Is not true

3 f :(0,1] x [0,1] -. [0,1] such that for all x,y e Y

(I) Pr((x,y) 9 S) = f(Pr(x e S) , Pr(y e S))

On the other hand, for certain random sets this is not only
true but f is also a t-norm:

Let 1&:(0,1) X (0,1) - [0,1) be any semi-distributive

t-norm. Then f or any Y (see Goodman [91] or Hohle [116] for
further details) and any given mapping 4 A : - (0'1] , there

exists a random subset S A&of Y such that for all

Yl,..,yme Y M m 1 1

i) Pr((yi, .. Y ;SA&

- P,(Pr(y1 e S;)'' Pr(y e Aa)

(ii) Pr(y. e A~a (P (y.) ;J = 1,. 'm

In particular;

(III) For P. min

where U is a r.v. uniformly distributed over (011]
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(iv) For = prod ,

SA,& = T

where T is such that the corresponding random membership function

I T is equivalent to a statistically independent 0 - I process,
i.e.,

Pr((y 1 . ... ) 9 T) Pr(y I E T) .Pr(ym e T)
1'PA A(ym )

Note also, for any random subset S of Y , the inequalities
in eq. ( ) , section 5.3 (A). are

() max(O,Pr(xES) S Pr((x,y) S) : min(Pr(y E S), Pr(yeS))
+(Pr(yES)-l)

the same bounds formally for any continuous t-norm (& as a func-

tion of Pr(x e S) , Pr(y e S)
Note some formal similarities in eq. (I) with Sklar'-

Theorem.
Now consider the converse problem:

Let Y be an arbitrary space and let J(2),Y) denote
(C I C E Y(Y) & card C S 2)

Let g : J (2)(Y) - [0,1] be a given function. Then we wish to
find all random subsets S , if any, such that for all

C E j(2)(Y I

g(C) = Pr(C ; S)

Equivalently, let g Y x Y - [0,1] be symmetric and S a
random subset of Y such that for all
X,y C Y

(II) g(x,y) = Pr((x,y) 1 S)

Letting x = y , this includes the condition

(III) g(x,x) = Pr(x E S) ; all x E Y

But because of the negation of relation (I), we kiiow (II) (and
III) in general, may have no solution for an S given a g :

In particular, pick any g : Y x Y -[0,11 symmetric such that
g is arbitrary over diag ('x × Y) , and such that there is at least
two distinct points x,0 y 0 Y such that

i Q g(y,0 yo) > I - g(x 0 ,x) t 0
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Then define g otherwise off the main diagonal to be arbitr-
ary symmetric such that at (x,0 Y o )

0 5 g(x ,Y o ) = g(yoxo) < g(xox ) + g(yoyo) -1

Then equation (.) will be violated, no matter what choice of
S.

Recall that any random variable V over Y may be considered
a random set S = (V) Another example of the impossibility in
general, of II, III admitting a solution S for a given g is ob-
tained by choosing, for example, Y to be discrete

g (X,y) d g (X,X).y (O)(x,y) ; all x.y E Y

5y(0) the classical Kronecker delta function, and such that

g(x,x) > I ; 0 g 0 (xx) 1 ,all x E Y

XE Y

It then follows that if 3 S satisfying (II,III), then S = (V)
for some r.v. V over Y But

I = Pr(V E Y) = Z Pr(V = x) = Z g(x,x) > 1
xEY xeY

a contradiction'
Let H = [0,1] .Let X E SET Recall (see section 2.4.2

(E)) g e Ob x(Higg(H)) iff

(1) g : X x X - H is symmetric

(2) g(x,y) A g(y,z) S g(x,z)
for all x,y,z c X .

In general, given any g satisfying (.) no random subset
S of X exists such that g and S satisfy (II, III): In parti-
cular, choose g = g 0 * It is clear that g0  satisfies (. ) , out

as the previous example has shown, no S satisfies (II,III) for
given g0 * On the other hand, there are g's satisfying (..)

which admit random subsets S of X such that (II,III) are satis-
fied. For example, let (A,?) e Obx(Fuz(H)) be arbitrary. Then

le*, for all x,y e X

g(x,y) = ?(x) A T(y)

Then the previous example shows SU(I) F T-1 [J,l] , U uniform on

[0,l] will satisfy (II,III) for g here.
More generally, we have the following positive result
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Lemma

Given any space X and any random subset S of X , a
t-norm (continuous) such that

(P&(g(x'y), g(y,z)) -S g(x,z) ,( ' )

where

g(x,y) d Pr((x.y} 9 S)

for all x,y,z E X

Proof:

Since the minimal (continuous) t-norm is minbndsum, P&

where

P&(0) (u,v) d max(u + v - 1,0)

for all uv E [0,11 , all we have to do is verify (...) for
(&(0)

Pick any three points x,y,z e X

Consider g(xy) + g(y,z)

= Pr(x e S, y E S) + Pr(y e S, z e S)

= (Pr(x e S I y c S) + Pr(z E S I y E S))-Pr(y E S)

ma0
1 x (a1  + alo + al + a )-Pr(y E S)

such that a is

fixed, with
a 1 +a 1+ao0 +a 0= I

where

a1 1  Pr(x e S, z e Sly e S)

a 10  Pr(x e S, z S y e S)

a 0 1  -.(x f S, z e S IY E S)

a0 0 -Pr(x E S, z e S Iy e S)

= (2a 1 1 + I -a 1 1 )-Pr(y E S)

= (a 1 1 + 1) Pr(y e S)

Hence
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g(x,y) + g(y,z) • (Pr(x e S, z e S I y e S) + l).Pr(y e S)

= Pr(x e S, z E S, y e S) + Pr(y e S)

Pr(x e S, z e S) + 1

Thus,

P(0)( (x,y), g(y,z)) : Pr(x 6 S, z e S) g(x,z)

If = (i.e., min) , a solution set of g's satisfying

(-'') is given by

g(x,y) = e(x) A T(y)

for any (X,P) e Obx(Fuz(H))

If is any Archimedean t-norm, then since 3 unique

h : [0,1] [0,+-] monotone decreasing with h(l) = 0
with

P&(uv) = h- (min(h(u) + h(v),h(O)))

for all, u,v e (0,1] (see section 2.3.6), whence (.) becomes

h (min(hog(x,y) + hog(y,z), h(O))) : g(x,z)

* and hence

min(hog(x,y) + hog(y,z), h(O)) S hog(x,z)

In particular, if (P is strict Archimedean, h(O) =

Then the above relation is equivalent to hog being a pseudometric
d over X ; conversely, given any pseudometric d over X

d h- od will satisfy (.-.

Finally, note that it easily follows from the property of t-
norms that if g,g' are any solutions for (..) , then so is
( &(g,g')

Thus again, Higg(H) - or more generally - the extension
Higg(H; &, & or) defined through (... ) plays a natural role in

extending fuzzy sets to a joint membership definition (v, "or", is
similarly replaced by or ) .

The natural questions we thus pose are:

(1) What are the properties of Fuz(H; 4&, (or )  when A = min

is everywhere replaced in Fuz(H) by P& , an arbitrary but

fixed t-norm?

(2) What are the properties of Higg(H, &, or) ?

I
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5.4 ]ntropv of Random Set Systems and Coverages.

Another basic problem associated with generalized sets or
possibility theory, or more generally, multiple-point coverage
functions and random sets is the determination of meaningful cri-
teria for ordering, in some sense, random sets in terms of "best"
representing coverage functions. Among natural criteria, should be
mentioned: expected volume (or expected cardinality in the finite
case) and entropy.

Denote by f the coverage function of a random set S on an

arbitrary space X Recall Robbins' formula (section 4.4):

(i) If X S Rn, then under suitable measurability conditions,
we have, for any m 1 ,

m ( )

E(p (S)m) = f fs(x. x. ) ((dx)
nR m nRmn i=l1

(ii) If X is a finite space,

E((card(S)) m ) = f (x...x
Z Si m

(x I .,mX .EX)

Thus, for any f e I (X) ,

E((pn(S) k) = constant, k = 1,2,...,m , regardless of the S chosen

from !(m)(X) . Thus, another criterion must be sought which is

sensitive to variable S E I (X)

Remark.

Robbins' formula was later independently rediscovered by Pratt
[205], and in turn used by Hooper (119] in demonstrating that most
common figures - of merit - for randomized test procedures and ran-
domized confidence sets involv- the random sets determining these
procedures only through their one point coverage functions. (See
section 5 5.)

We proceed now to discuss maximal and minimal entropy problems
for discrete spaces.

A. Fundamental maximal entropy theorem for discrete spaces.
(See, e.g., Jaynes (123].).

Let X be any fixed discrete space. For any probability func-
tion P E Tr(X) , the class of all probability functions over X
define the entropy of P by

Ent(P) = Z -log P(x).P(x)
x=EX

Let J0 be any finite index set.
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Let

d
g = (gj)jj (column vector of functions) )

d= (fv ) (column vector),J jJ~

A (A ) (column vector)

where for each j e J 0 g, : X - R is an arbitrary fixed function,

S~R R arbitrary fixed constant.

Next, (assuming convergence) define

(X) d P I P e 9r(X) & Z p(X).gx = , 6 C J
(gx ) gX 0

Then

Tsup Ent(P) = Icy (G(A)) - AT.'
PE (g )(X)

occurring for P = P (g,), where P (g,) is determined by:

T
P (g, )(x) = (1/G(A))-eA g(x)

T .

G(A) z e g(x) GX
xe x

and A is a constant vector determined by

T
Z g(x).e A T  g(x) =

xEX

or equivalently,

-I1og G(A)/CA = , all J Jo ()

Let X 9 Rn X discrete.
In particular, let m be such that m 2- 1 fixed and choose

d m= UJo 0 k U (k)

where

J(k) d (1,2,....n) = (( 1  .... Jk )  I }ljk E n
k = 1,2,. ..,m .

For each (il .... k )  Jk , k = 1,2,...,m , define

g9 by,

p
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g.(x) dX xj.Xk' d0[x9 W %..1

for any x = Li e X , x 6
i

This I h fst .... ... .a 1i probl"- with salut
for maximal entropy being

P (x) S

A . -. + A ".

const(A).e :j I -n iJl ... j mmS n

with A determined from eq. (1).

In particular, let X = {a + j.A I j = 0,1i....n-i ) n
, a lat-

tice structure.
For m = 1 , we obtain

Jo () = ,...,n)

n aA ke A -
G(A) = e AkI iik= k -

e

and hence eq. (1) reduces to

A . (I/A) log (Tj) , j = 1,...,n

where each r . is determined from

J.rT . A r .
r j - j . - a ; j = 1. . .n .

r -

Specializing further, suppose a = 0 , A = 1 , and r = 2

i.e., X = (0,1) n, m = 1 and n Z 1 as before. Then here

n Ak
G(A) = 17 (e + 1)

k=l

p = yi/(g - Yj) , i = .. n

implying

0
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n

G(A) = / (1 - 1 )
J=1

and finally

P(g," ) (x) = x[ . - 1-x)

all x E X.

(For a = 0 , A = 1 , r = 2 , but m ; 2 , the solution form
remains as in eq. (1) with A no longer in simple form for the A's
as the case m = 1 , because of the relatively complicated form of
G(A) .)

The above special case thus yields the same result S = T for
the problem

sup (Ent(S))
Se (1 ) (g)

where g = (PA and P is the probability function of random

variable PT "

Other maximal entropy problems involving m point coverages
may be similarly approached.

B. Case for finite base space. (See also [89].)

Consider now the case where the base space X is finite.
Recall that the entropy of a rancom set S on X is.

Ent(S) - Pr(S = C) log Pr(S = C),
Ce (X)

Theorem 10

For any A e I(X)

sup (Ent(S)) = ( x)log A(x) - (1 -A(x))log(l (x)))
Se I (A) xEX

occurring uniquely for S = T(A)

Proof:

Either use the fundamental information theory inequality ap-
plied to PS - which is equivalent to a specialization of the well-

known result that given any marginal probability distributions, the
joint probability distribution function maximizing the entropy
corresponds to the marginal random variables being statistically
independent, or specialize the exponential family characterization
of maximal entropy (see part A) to this case.

I ~
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Remark.

The above Theorem 10 is also well-known in the theory of sample
surveys; see Hajek [103]. Specifically, in sampling from a finite
population X , a sampling design is a probability distribution Q

on the collection of all 2 n subsets of X (assuming card(X) = n)
In other words, Q is the induced probability moasure of a random
set S on X The inclusion probabilities (first and second-
order) are precisely the values of the coverage functions of S
i.e.,

Pr(x e S) = Q(A)

[A e (X)1

Pr((x,y) 9 S) = 7 Q(A)[ 2 {x, y),]

A 4 1 ( )
The entropy of S is a measure of spread-out for sampling probabil-
ities. For the choice of a random set representation (a sampling
design) of a given one-point coverage function (first-order in-
clusion probabilities), one is in favor of the maximum entropy
principle as an appropriate criterion. More precisely, given
Pr(x E S) , for all x e X , the random set S which has maximum
entropy is the one with probability measure Q on 91(X) given by:

A e T(X), Q(A) = x Pr(x e S) x (1 - Pr(y e S))
xeA yEA

(Poisson sampling design).
Now, motivated by Robbins' formula, consider the weaker

constraint

E(card(S)) : Pr(x e S) S
xeX

(1 < Y < n = card(S)) , Y given.
IT-in- fhe Lagrange multiplier technique as in the case of

random variables, we obtain:

Theorem 11

The solution of the optimization problem

maximize Pr(S = A) log Pr(S = A)
AE11 (X)

subject to 7 Pr(x e S) =-

XEX

is given by:

0



Randon Sets and Dispersions 399

= 1 -pcard(A)
Pr(S = A) g( ) e A (X)

where A is the unique solution of the equation

g'(A) + 1g(A) = 0

with g(A) = e- car d(A)
A (X)

C. Minimal entropy problem.

On the other hand, the minimal entropy problem here poses more
difficulties. It can be shown that (89]:

Theorem 12

Let card(X) = n Then for any A E 9(X)

inf (Ent(S)) = mn (Ent(S))
SeI 1 (A) (-(2) (S)er 1 (A))

Proof:

By Theorem 4(3), the minimization problem reduces to the rou-

tine minimizing of the sum of a strictly convex function (-x-log x)

of linear combinations of components of (2) (S) over the region
I(A)

Even though (see remarks (a) and (c) following Theorem 4
S(2) (S u(A)) E T1(A) , and if Z ( A(x)) 1 , S'(A) is well- defined

xe X

with (2)(S'(A)) E 71 (A) , it is not always true that the global

minimal entropy occurs for either one. A simple example illustrates
this. Let n = 2 with X = (x1 ,x 2 ) , A e 9(X) with

PA(xl) : PA(x2) Let h(x) = -xlog x , all x , and define

YI = A(xl) and Y 2 = OA(x 2 ) Finally, let

G(A) = inf (Ent(S)) . Then:
S (1) (A)

(i) If r(A) = 0 and y 2 > 1/2 , then

G(A) = h(y ) + h(Y 2 ) + h(l - y, - Y2 )

occurring uniquely for S = S'(A)

(ii) If either r(A) = 0 and Y 2 < 1/2 or r(A) > 0 and

Y, ; 1/2 , then

p
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G(A) = h(yl) + h(y 2 - yl) + h(1 - y 2 ) ,

occurring uniquely for S = Su(A)

(iii) If T(A) > 0 and y1 < 1/2 , then

G(A) = h(l - y ) + h(1 - y2 ) + h(y 1 + y2 - )

occurring uniquely for S = S"(A) , wbere S"(A) is determined by

Pr(S"(A) = (xl}) = 1 - Y 2 , Pr(S"(A) = (x2)) = 1 - yl

Pr(S"(A) = X) = r(A) , Pr(S"(A) = 0) = 0

Extensions of the entropy problem to multiple coverage t'inc-
tions and general spaces X have yet to be addressed.

5.5 Randomized tests and confidence region procedures.

Consider the following extensions of Lehmann [154]:

Let y S Rm  be a data or sample space, X 9 Rn  a parameter
space, (VIG)oEX a family of date random variables over Y with

corresponding well-defined probability distribution functions
(P 919EX

Let (a,D,Pr) be a fixed non-atomic probability space and
denote

t(Y) 4{S I S : S + 9(Y) , S a random subset of Y)

and similarly denote St(X) and %(X x Y) as the classes of all
random subsets of X and X x Y , respectively.

The class of all randomized confidence set procedures is
denoted by

= (R I R : Y - %(X) (measurable, etc.))

and the class of all randomized acceptance region procedures is
given by

Ad= {A I A : X %(Y) (measurable, etc.))

Let

X ((H 0(e), H1 (e)) I 0 E X)

be the fixed family of hypotheses, where for any a e X

H0 (G) l (0) , Hl(e) X -4 (9) S X
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Let (Vie) 04EX be a family of observation random variables over

Y (i.e., (Vie) : r -* y (measurable, etc.) with corresponding pro-
bability distribution functions (P 9 GEX*

There is a bijective correspondence between 9 , the class of
all randomized decision or test procedures (test(e)) sex concern-

ing X , and A ,given by

test(O Decide H 0 () iff observe y e A(e)

tetS Decide H 1 (9) iff observe y e Y -4 A(9)

for all S e X.

There is a bijective correspondence between £~and A and
hence T , given by:

(i) Given any R e £.*define A RE A by, for any e X

A R(O) 9 ('I I ye Y & S e R(y))

Then, if one defines S R e %(X x Y) by

s R (9y I a E X, y c- Y & e R(y))

it follows that for all 9 e X, y e Y

S R d section of S Rat S

= (y I y e Y & (9,y) e R ) = A R(S)

S R(.Y= section of S R at y

=(a 1 0 e X & (9,y) e S R) =R(y)

(ii) Given any A E A ,define R A e % by, for any y e Y

R A(Y) 9 (0 1 9 X &y e A(9))

Then, if one defines S A e %(X x Y) by

SA 21 ((,y)j 0 e X, y e Y & yec A(9))

it follows that, for all S e X , y e Y,

S A(0,.) =A section of S Aat 0

= (y I y r= Y & (0,y) f SA ) = A(9)

S A(,Y) section of S Aat y

=(0 1 9 E X & (9,Y) e SA ) = RA (y)
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Call any pair (ARA) or (ARR) compatible.

Conversely, it follows that %(X x Y) generates all possible
compatable pairs of randomized confidences set procedures:

Let S e %(X x Y) be arbitrary.
Define AS e A and RS e % by, for all a E X , y E Y

A (8) d section of S at 8

= (y I y e Y & (0,y) E S)

Rs(Y) d section of S at y

= (8 0 e X & (e,y) E S)

and

AR s R A S=RS
AS  R

Thus, for any S e %(X x Y) , there is tests = (testS(e))0EX

determined by randomized acceptance region procedure AS corres-

ponding to confidence set procedure R S such that, for all 8 e X

Pr(Decide(for tests(9))H 0 (9) 1e) = I - Pr(Decide HI(e) 1 8)

= Pr(V e AS(8) I 8) = f dP8 (y)

YeA S(0)

= Pr(e e Rs(V) I 0) (two-stage randomness due

to V and S ),

In particular, these relations show:

(i) For any 0 < a < 1 test S e I is an a - level test

procedure, i.e.,

Pr(Decide(for testS(9)) H (0) 1 8) a ; for all 8 e X

iff RS  is an (I - a)-level confidence set procedure, i.e.,

Pr(O e Rs(V) I 8) a - ;a for all 0 e X

(ii) Let 0 < a < 1 and 80 e X Then tests(80 ) is a

uniformly most powerful a-level test for H 0 (00) vs. H1(80) iff

R s , among all (I - a)-level confidence set procedures R

minimizes Pr(e 0  e R(y) I 0) , simultaneously, for all 8 E H1( 00

(See Lehmann (154) for other properties.)
In addition, Robbins' result [219] (also independently

rediscovered by Pratt [2051) applied here yields (3ee also section
4.4):
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Ev(Voln(Rs(V))) = f J do dPro(Rs(V))- (B)
Be1B eB

n

- f d PrO(Rs(V))- (B) do

OeX Bee ) (Bn)

f J Pr(o e RS(V) I 8) do

OeX

f { Pr(V E As(a) I 0) do

OeX

f Pr(Decide H I 0) do

Oc=X

Also, note the evaltuatian of the one-point coverage function
P(S) : X x Y - [0,1] of S at any e X and y e Y

P(S)(O,y) = Pr((O,y) e S)

= Pr(V e As(e) I V = y) = Pr(y e AS(9))

= Pr(o e Rs(V) I V = y) = Pr(O 4 RS(y))

= Pr(Decide (for tests(9)) H0 (o) I V = y ;)

Note also the reductions of all of the above results when
S S C 9 X x Y , i.e., for the non-random case.

Thus, in this notation, for all 0 e X , y e Y

E(vol n(Rs(v) I V= = f (S)(9,y) do

oeX

E(vol n(Rs(V))) = f f O(S) (9,y) dP0 (y) do

OeX yeY

Pr(Decide(for tests(9)) H 0 (9) 0) = Pr(V e AS(e) 0)

= Pr(o e R(V) I 9)

= f PS (G,y) dPe (y)

ye Y

Then define the Joint admissibility measure map

p : g- ((0,1]2) X x Y  for 1C by, for any S 6 %(X x Y) and hence2
any test S E T , as the map P(S) : X x Y - (0,1) where for any

0 C X and any y e Y

I
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p(S) '9 ,y)
(Pr(Decide(for testS(9))HO(6) I 6) , E(voln(Rs()) I v = y))

Partially order T by, for any SI,S 2 e %(X X Y)

tests1 = testS2  iff P(S) =P(S), a.e.,

tests1 5 testS2 iff p(S 1 ) S P(S 2 ) ,a.e.,

teStS < tests iff p(S 1 ) S P(S 2 )

for all a e X and for a.e. y c Y with strict inequality holding
for either the first component at come 0 E X or for the cecond
component at some set of y E Y of positive Lebesgue measure.

Then the admissible tests in T a-e those which are not less
than some other test in T . Other criteria may be designated for
comparing the worthiness of tests. In any case, these comparisons
may be carried out essentially through use of the functions (S)

and not necessarily directly using the actual corresponding tests
e T .Joshi [125] was apparently one of the first to recognize this
principle, where he showed the admissibility of the usual confidence
set procedure for the means of one-and-two-dimensional Gaussian
distributions. (For three or more dimensions, the procedure is
inadmissible as Joshi showed in an earlier paper.) Joshi also
claimed ([125]) that given any (C : X x Y - [0,1] in the form of

a simple or elementary (a countable weighted sum of membership
functions of ordinary sets) function corresponds to a randomized
confidence set procedure, i.e., an S c M (X x Y) and that any
(suitably measurable) (C represents the liit of a sequence of

such procedures. (See G. S. Goodman [93] for so.-e related results
from a fuzzy set viewpoint.) Carrying this idea further, Hooper
([118], [119]) showed that given any suitably measurable

PC : X x Y - [0,1] , there was at least one random set S e %(X x Y)

whose one point coverage function was P : namely S = SU(C) !

Hooper, clearly, was unaware of the extensive litereture devoted to
the basic one point coverage problem, but indeed did use the funda-
mental transform SU  in reconstructing random sct S whose one

point coverage function was specified. (See t1.e earlier part of
this section for various results in this problem.) Furthermore,
Hooper ([119], p. 550) also developed independ,nt of any fuzzy set
literature connections (as extensively described in this text) in
effect, that the class %(X x Y) partitions in-o one point coverage
equivalence classes indexed by all possible distinct 4C E 9(X x Y) !

(Hooper [239), [240] also developed important notural generaliza-
tions of sufficiency and invariance techniques fo-' confidence set
procedures in terms of the one p-int coverage fun-tion represen-
tations.)

Thus we have a basic tie-in between some baric fuzz,, set-random
set relations and results in classical hypotheses testing -nd confi-
dence interval theory!
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In summary:

(a) There is essentially (up to measurability considerations) a

bijective relationship between all random subsets of a parameter

ipace, cross a data space, X x Y , all randomized test procedures

for all simp'e null hypotheses vs. complement alternatives of the

parameter space and all compatible pairs of randomized acceptance

regionsand confidence set procedures. A similar relaticn holds for

all ordinary subsets of X X Y and all non-randomized tests and

confidence set procedures.

(b) Most criteria of interest involving such tests or equivalently

confidence set procedures may be formulated ii terms of the one

point coverage function of random suosets of X x Y and (hence by

The use of the canonical transform SU , etc.), in effect (up to

suitable measurability conditions), in terms of all fuzzy subsets of

X x Y only. For example Robbins' result [207] shows expected vol-

umes of a randomized confidence set procedure are the integrals of

fuzzy set membership functions - the one point coverage functions of

The random subsets of X x Y
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CHAPTER 6

ISOMORPHIC-LIKE RELATIONS BETWEEN RANDOM SETS
AND GENERAL LOGICAL SYSTEMS.

Mappings SU and T (Chapter 5) are special one-argument cases

of multiple argument mappings S from cartesian products of all,

generalized subsets of given spaces to cartesian products (as well-
defined random objects) of all random subsets of the same spaces
which marginally produce one point coverage-equivalences between the
generalized and random sets involved. Again (see [90], [88]),
these are called choice function families. Next, let X1 ... Xn

and X be any n + 1 given spaces and

* : 9 X( )x. . x (X n) - 9(X)

any given n-ary ordinary set operation. Often (but not necessarily
so, in general), * is the power extension of the mapping

: X x..x X X

where for any C. E (X. ) j = . n

,Cn) d (*x .  x) Ix. C. j =1.n)*(C1 l--- C .... . , .... xn J x C j

Also, let

S: 9(X 1 )X.. : (X n ) - . M

be any given n-ary generalized set operation (defined through the
membership functions, of course).

Finally, let = (Sn be a choice function family of

random set maps, i.e., for any space X

Sj = S : 9(X) -4 (X) ,

such that for any spaces X and any Aj E I(X ) , j = 1,...,n

the random sets

Sj(A ) : a ' ?(X) , J= i,... ,n

with respect to some initial probability space a , yield

4070e
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n

(S.(AX)) = . x ×(X.) as a well defined random set,
"' ' J=

where marginally

Sj(A) --A , j= .. n

Then we say that the triple (* SS) is in an isomorphic-like

relation, also called a w-hom (weak-homomorphism), iff

A S(A) s(a
-n n ~n

i.e., for all Aj i C(Xj) , j = 1,...,n , x e X

lP*A (x) - C(A (x) =Pr(x e S(A-))~n

Pr(x e * S(An)) = Pr(x E * (S. i(A.)))

Note that in the above equation, it is assumed that * S(An)

is a well defined random set. More on this:
Using standard procedures, it is easily shown that if I is

any index set,

S(A 1) d (S(A i))jc-I : 91 (X')O

~ (S(A jee

where (n,%,Pr) is some fixed probability space and for all

w E a , S(AI)(W) 2 (S(Aj)(w))j. I , S(AI ) will be ( ,C)-

measurable, where C = x (C (So (X.)))) , inducing probability

d -
space ( x T(X 6, LI) V = ProS(A) .Furthermore, ifjEI 'Futemrf

* x ? (X.) - P(Y) is any (C,9)-measurable mapping for some

a-algebra I over 1(Y) , then *oS(AI) : a -# 91(Y) will also be

measurable. In particular, since ordinary set operations * in-
cluding u , n and C are measurable, (and continuous relative to
the natural topologies involved), it follows that *oS(AI) for

* = u , n , C , etc., are all measurable and hence random subsets ot

appropriate Y's.

Define for any A e 5(X) here the complement of A , CA (or
X -4 A , etc.) by
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(P- (x) i - A(X) ; all x E X
CA

and similarly, if f X Y is any c,:inary fuiction, for any
B e 5(Y) , x E X ,

" (B) (x) = B(f(x))

Then, it can be shown that :f S is any choice function, then

(C C,S) is a w-hom and if f X -+ Y is sufficiently measurable,

then (tff f-1, S) is a w-hom. If fuzzy set system 5 is non-Archimedean, and S is any choice function, then f and projection,

proj., induce modified w-hom's, where - is replaced by . Further-

more, if (x, x, S) is a w-hom for fuzzy set system 9 , then for
any A E 5(X), x. E X , xk E Xk , the pair-wise correlation of

random set coverage - Correl( S (A )(Xj), S (A k)(k)) -is:

(i) maximized for the evaluation =0

(ii) made zero, i.e., uncorrelated, for 5 =

(iii) minimized, i.e., made most negative, for n 2 , for

It can be shown ([91], Theorem 5.1) that if (X , x , S) is a

w-hom, then (T , t , S) is also a w-hom (for the same S) iff the

corresponding fuzzy set system is semi-distributive. (See section
2.3.6 for notation.)

Let us consider now some particular classes of choice function
families and associated w-hom's.

First, let 0& be any J -copula (see [91]) and let stochastic

process U g (U ) be such that each U. is a random variable

uniformly distributed over [0,1] with joint probability distribu-
tion function furnished by 0& :

Pr(U I  SX .... U)n :5 xn  = & (x 1.... xn

for any x1 .... x E [0,1] Then it follows that U induces

dchoice function family S= (S )Je where for DeMorgan fuzzy set
1 0

system 5 = (-(), (& Por) , it readily follows that (* SU)

is a w-hom for * = x , n , t , u Also, for any C. E 9(X)

J J
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Aj e (Xj) j e K 9 Jo.

Pr( & (C Su(A))) = Pr( & (C. i gA. CUj,1]))
jeK jJJeK J

- Pr( & (U. ! inf A (x)))
jeK i xC.jEK J

- (inf A (x))
jeK xeCj

Note that when = min , we obtain SU = SU  and all of the

w-hom results remain valid. Also, for (P& prod, U becomes a

statistically independent uniform [0,1] process and SU  likewise

induce statistically independent Su.(A)'s and w-hom's for unions,

intersections, and projections, etc.
Next, let 5 e % (semi-distributive class) and for any

A = (A.)je j , A. E e(X) , for all j e Jo' let

d d d

4T(A) = (OT(A)(x))xeX = (VA,&,x)xeX = VA,&

be a zero-one process such that each VA,&, x  is statistically

independent with respect to different x e X and where each

A,a,x A ,&,x,j j J

is a zero-one process finitely consistently generated by the rela-
tions

Pr( .&  (VA.,&,x J )) I& K(PA (x)) ; K 9 I(Jo )

jeK J' JEK j

Each T.(A.) , uniquely corresponds to

Tj(A ) = VA , &,,j (VA J ' & x j ) x e X

a T-type random subset of X
For any C. E 9(X) and A. E (X) ; j e K 9 Jo

Pr( & (C. T.(A.) ) ) (x)& ( (x)))
EK x e U C. (klxCkkeK)k

je K k'

implying that (n ;fl , T) is a w-hom.

Sl
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Another family (see Hohle (116] and (117] - the latter pre-
senting very general results) of choice functions may be generated
by choosing any fuzzy set system 5 = (1-(.), , & or ) e "e (the

semi-distributive class - see earlier remarks, recalling that
examples of these fuzzy set systems include (1-(.), prod, prob-
sum) , (I-(.), min, max) and all ordinal sums of these (section
2.3.6).

Then for any fixed collection of spaces X = (x n

and a collection of fuzzy subsets A = (A )j=. n frcm X

first a doubt measure pA,& P is determined over the class of all

subsets C of X by (first evaluating for finite sets and extend-

ing)

d

P A, (P ( A i (x

[ l .... n]

Similarly, define plausibility measure I1AP or by

PA, or (  - or (A (xJ))
[X ieCj, ]A

j=l .. .. n]

Then, by previous results, there are uniquely determined joint
random set families

= (Sj(Aj .&))j=l....n

and

Sor (A) (S.(Aj, or))J=I, . ..,

such that not only for all A fuzzy sets

§&(b) g b ; A or(A ) - A ,

yielding §, and S as choice function families, but also such
- or

that for all combinations of (P and 0or (and cartesian product

and sum - and, in particular, intersection and union)

Pr( comb (&,or)(C S (A ,(P
all j,k j,k jjc

comb (4&,@or)(O& (OA (xj))) all Cj,k ' Aj
all j,k x ecxjcj ,k

p
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with a similar relation holding for Sor (A) , with respect to in-

cidences in place of inclusions. This implies isomorphic-like

relations between multiple argument fuzzy f and ordinary set

operation f . X -0 Y extended to the respective power classes,

where f as obtained by the extension principle discussed earlier,
i.e., for all y e Y and all (fuzzy) 6 ,

( )(Y)= Por - ((P6A.(Xj 
"

((x ) E f-(y) j=l....n 3

j=1..n

Thus, for all A

f (A) & f(§a(XA;&)

This should serve as a second response to Manes' complaints [170]

(see also 10.2 A), since the cartesian products and sums (for E Y'e)
form simultaneous w-hom's with respect to members of the families.
Arithmetic operations (such as fuzzy sums, functional-cartesian
product transforms, fuzzy products, etc.) also form w-hom's for S&
and S

-or

For subset inclusions, the following holds for any
AI A 2E(X)

A1 2>11 = ( (A 1 = A2 (x)) = Pr(S&1, 1(AI )  Sor,2(A2))

xEX 1 2

The above results generalize the single argument choice func-

tions S& and SOr where, for any A e 5(X) , pA,& is a doubt

measure and YA,or is a plausibility measure obtained by, for all

C c 2(X)

PA,&(C) = (P& ( A(X)) ,

Xe C

PA,or(C) = qor( A(x))

xeC
SCA) or(A) S = CSIA

&(A) PA,& oA A,or &

A basic characterizing property of this class of choice functions is
given by

Pr(C _ S A,&) = A,&(C) ; Pr(S A,orA C) = y A,or(C) ; C C T(X)

by extending the domains from I(X) to 9(X) via Theorem 3,
Chapter 4. Note also that

0
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S u(A) = SPA,min ; T(A) = S ;.all A e J(X)U ~ A~min A,prod

SU  is not a part of the S nor S family, in general,-or

except when U is chosen to be identical to U , i.e., U. = U

for all j e J , whence , = min

T is not a part of the S nor S family, in general,~& or

unless P& is chosen to be prod, in which case, VA,&

becomes a completely statistically independent (with respect to all
indices) zero-one process.

A basic question is to determine what fuzzy set systems exist
which lead to simultaneous w-hom's, for either the SU  family or

the T family, for cartesian sums and products and possibly com-

plements, and for arbitrary combinations of these operations. In
the last case, it may be interpreted that a generalized set system
involved in such a relationship is identifiable with a correspond-
ing random set system.

Theorem 1 (Identification of Generalized Set Systems with Random
Set Systems.)

(a) is semi-distributive iff (x ; x , S) and (S , 5) are

simultaneously w-hom's for S

iff (combo(x , t ) , combo(x,t), 3) is a w-hom,

where S = SU or S = T ; in the latter case, replace x by n

and t by U everywhere.

(b) I is semi-distributive and DeMorgan iff (a) holds with the
inclusion of C in the combo operators and a modification of cer-
tain random set representations (those corresponding to an odd
number of DeMorgan transposes to be clear of all complements) where

in places S (A ) is replaced by CS (C A )

(c) Assuming for 5 that (O&(x,y)/dy)y=o exists for all

x e [0,1] , then 9 = 9 1  iff (b) holds with no modifications of

random set representations.

(d) Consider the case S = SU and I a DeMorgan fuzzy set system:
- ~
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(i) U is a statistically independent process iff 9 = 1'

whence (c) applies,

(ii) U is an identical process, i.e., U. U , iff

= 50 whence (b) is applicable with

C Su(C A) = Siu(A) (with probability one);

(iii) For U = (Ui,U 2) only U2 = I - U1  iff 9 =:

However, although (x . x, SU is a w-hom,

(T ;t,Su) is not simultaneously a w-hom.

(e) Yager's DeMorgan family 9j yields for each p , and corres-

ponding p&,) - generating uniform [0,I] process U : (X p;XS U )
~P ~p

is a w-hom, but (t p t, S ) is not simultaneously a w-hom.

Parameter p can be shown to be directly proportional to the pair-
wise correlation of random set coverage here [91].

Three basic problems arise concerning relations between fuzzy
and ordinary set operations with respect to weak homomorphism.

Basic Problem 1.

Given any ordinary n-ary set operation *, what choice func-
tion families S exist and what fuzzy set operations * exist such

that ( ;*,S) is a w-hom?

Theorem 2 (Solution to Basic Problem I - See [81].)

Given any * and any S , there exists a unique * such that

(, *, S) is a w-hom. The relationship is given explicitly by, for

all x e X , A e (X)

A(x) = Pr(lS(A) E .l(Oxs)) = f 4- (z) d vS(A)(z)~ ~ ~~zEz *C,)~
n

. = x {0,1) 3 ;C 1(X).(t*(¢c) = 'i*S (C) ; Z
n ne

0
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In addition, * extends * , i.e., for all C e

C = *C

Corollary 1 (Basic Problem I for Compositional Operations.)

If * is a composition, i.e., there is a fixed function
ng. : (0,1) - (0,1) , with

,( C) = g*o(%C) ; all C E (X)

then

-- . (g.(a).Pr(xe( n S.(A.) - ( U S (A)))) x X
a-Ax =1 =0a

Ordinary binary composition set operations.

2
Let g* : (0,1) - (0,1) be arbitrary. There are 16 possi-

ble g*'s , analogous to the 16 possible classical logical binary

truth operators. Let X, = X 2 = X be arbitrary spaces. Then, each

g* corresponds uniquely to a

. : Z 2  (0,1 0,i X  (0,1)X  and * X x X -* X such that

for any C. E 9(X) , j = 1,2,

(*(C ,C 2)) = (C1*C2 ) = 4*( C1' 2) = g* (4 C c 2 )

Now let Si : (X) -* %(X) be arbitrary such that for any

A.i e T1(X)

S (A ) Aj ; j = 1,2 .

It follows readily that the joint random sets
(SI(AI), S 2 (A2 )) may be arbitrary such that for all x e X

f(A 1 ,A2 ;x) = Pr(x e S1 (AI) n S2 (A2 )) = Pr(x E S I(A ), x E $2(A2) )

Pr( A (X) = 1 'PA (x) 1 i

L(A 1 ,A2 ;x) S f(A 1 ,A2 ;x) S U (A1 ,A 2 ;x)
U(A 1 ,A 2 ;x) min Pr(x e SI(A 1 ), Pr(x e S2(A2M

= min (Ax), 'A 2(x)) , the maximal t-norm

evaluation,
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L(AIA2;X) = max (Pr(x e S1 (A1 )) + Pr(x e S2 (A2 )) - 1,0)

= minsum ( A (X) A(x)) , the minimal t-Calorfn

evaluation,

where, in general, there does not necessarily exist
2g : (0,1) - {0,i) such that

Pr((pS (A )(X) 1 , PS 2 (A 2 )(x) = 1) = ( x ) ' (A 2 (x))

for all x e X , j = 1,2. (Sklar's Theorem [226] is too weak for
use here. See also the more general bounds L,U discussed in
section 2.3.9 (A).)

Next, for each given choice function family $ 2 = (SIS 2 )

(with S,S 2 arbitrary satisfying eq. (-) and for any A. E 9(X)

j = 1,2, (S1 (AI), S2 (A2 )) being a well-defined joint random set),

by either direct expansions of each of the 16 operators or by
specializing Corollary I to n = 2 , it follows that 16 unique bi-

nary generalized set operations W may be defined such that

* 2 is a w-hom, i.e., for all A. e 5.(X all x 4 X
-2 J J J

j =1,2

Pr(x e (SI(A 1) S2 (A2 ))) = A 1 A 2 (x)
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g, defined by C1 *C2  A1"A 2 (x)

its evaluation over: for any for any A, A2

Operator C1 . C2 E (X) e I(X) ; x E XNo. (1.1) (1.0) (0,1) (0,0)

1 1 1 1 1 X

2 1 1 1 0 C1 U C2  A 1(x) 2A (x) - f

3 1 1 0 1 C1 U (X -4 C2 ) 1 - A2 (x) + f

4 1 1 0 0 C, lA1(x)

5 1 0 1 I C2 U (X -4 C1 ) 1 -A 1 (x) + f

6 1 0 1 0 C2  
4 A2(x)

7 1 0 0 1 X - (C1 I C2) 1 - 0A (x) - cA2(x) + 2f

8 1 o o o c n c2 f

9 0 1 1 1 x j x (C1 n C2 ) 1 - f

10 0 1 1 0 ' CI4 C2  1 (x) + A2 (X ) - 2f

11 0 1 0 1 X -4 C2  1 - A2(x)

12 0 1 0 0 CI - C2  A1(x) - f

13 0 0 1 1 X-4C 1  1 - A (x)

14 0 0 1 0 C 2 - C1  A2(x) - f

15 0 0 0 1 X -4 (C1  U C2 ) 1 - (x) - (x) + f

16 0 0 0 0 0 0

Table I.

Generalized Set Operator Extensions Isomorphic-Like
(w-hom) to Ordinary Binary Composition Set Operators.

Thus, for example, consider operator 2, union. By first
choosing

f = m in ( 0 AA 2 )

1 2mmm mmm| m mm ~ nm
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0
occurring, for example, for S.(A ) U (A.) P I [U,1] , U a

uniform [0,1] random variable, then for all x e X , A. e g(X)

j = 1,2

AU A 2 (x) = max ( (X), A 2 (x))

= Pr(x E Su(Ai) U Su7A2) )

Or by choosing

f = A I(." (A 2

occurring, for example, for S.(A.) =SU (A) = A. 1[U,I]

3 3
j = 1,2 , where U and U 2  are statistically independent uniform
(0,1) random variables,

UA1 U A 2(X) = A (x) + A 2 (x) - PA (x) . A 2 (x)

= probsum(PA (x ) , A 2(x))

Or by choosing

f = max(P I(*) + PA2 (. - 1,0) ,

occurring, for example, for S.(AJ = (UAI,)I],

3 3
j = 2,2, where U 1 = I - U 2 are uniform [0,i] random variables,

PA 1U A2(x) = min (AI (x) + tA2(x), 1)

= minsum ( AI(X), A 2(x))

Note also the table includes the four unary composition exten-
sion forms:

g* d~fined by (C) (A)(X)

Operation its evaluetion over: for any
No. 1 1 0 C e I(X) for any A e g(X); N E X

1 if 1 x 1

2 1 0 C CA(x)
3 0 1 X -4C I - A(X)

4 0Of 0 0

Table II.

Generalized Set Operator Extensions
Isomorphic-Like to Unary Compositions.
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Basic Problem 2.

Given an n-a-y generalized set operation * , does there exist
a choice function family S and an ordinary n-ary set operation

such that (* , ) is a w-hom?

First, it can be shown that there is at most one * such that

(*; *, S) is a w-hom (for any possible S): namely, * restricted

to ordinary subsets. (Proof: Restrict the definition of a w-hom
to ordinary subsets and use the fact that the one-element equiva-
lence classes under are generated by the class of all ordinary
subsets.)

Secondly, the aforementioned examples of choice function fami-
lies SU ' 1 ' §a ' §or show that many such w-hom's exist. In

addition, it can also be shown (Goodman [91], Cor. 6.2) that fuzzy
partitionings, and in particular, all fuzzy weighted sum operators
(not t-norms nor t-conorms, in general), have natural corresponding
weak homomorphic random set representations. These are in the form
of disjoint unions of intersections of corresponding pairs of sta-
tistically independent weak homomorphic T - type random sets.
Nevertheless, there do exist classes of fuzzy set operations which
have no random set counterparts which preserve the number of argu-
ments of the operator. (See ksko T orom 4A er,)

Some binary fuzzy set operations with no binary random 0r2rtifl
represent& 4.ons.

Let D 1 be the open unit interval, D 2 be the open unit square,

and g 2 be such that for all x,y e D 2

d
92 : D2 D D g 2 (xy) = x

Then let g be arbitrary such that g : [0,1] x [0,1] [0,1]

g a g 2 (over D 2 ) , g(OO) = g(O,l) = 0 g(l,O) = g(l,1) = 1

In turn, define the binary fuzzy set operator () over I(X) byg

( I ) A 2(x) g( xA ), A 2(x)) ; A1 ,A 2  e 1J(X) , x E X

Then (() , S) is never a w-hom, no matter what ordinary

birary operator * and choice function family S = (SI,S 2 ) are

selected.
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A related construction yields an analagous lack of possible
unary set operator representations for a class of unary fuzzy set
operators: Choose g : [0,1] [ [0,1] to be arbitrary such that
g i identity, l-identity,0,1 In particular, this implies if 5

th
is Archimedean, the q intensification operator, which linguis-
tically can correspond to "very(-)", "very, very(.)", etc.,
depending on the integer q chosen, where for all x e X and all
A e 5(X)

U ):&(A(X, A(X))......PA(X)) (q factors)

has no random set unary operator counterpart, although by Theorem 2,

for many such fuzzy set systems, (.)q) does hav a q-ary random
set representation with A1 = A2 = Aq A for the w-hom

(( )q n,S) , i.e., for all A e v(X)

A q _S(A ) S(A n A n ..n A) t S1 (A)n S 2 (A)n-.n S (A)

Basic Problem 3.

Are there weak homomorphic relations between given generalized
set operators which do not depend on specific choice function sub-
families for some large class of choice function families?
Equivalently, how closely do weak homomorphic generalized and
ordinary set operations resemble true algebraic equivalence class
operations, where the operations do not depend on the particular
choice of equivalence class representative?

A partial affirmation to Problem 3 is given in

Theorem 3 (Some Equivalence Class Operations Involved in Weak
Homomorphisms)

I
Let f : (0,i) n. (0,I) be fixed but arbitrary and for each

k 9 (k ,... k ) E f- (1) , define

(kj 0,1] - [0,1];

fx ,if k. = 1
k dx) dIx ; x e[0,I), j el
~ = I - x , if k. = 0 en

Then define n-ary generalized set operator Lf over 5(X) , by, for

all A e 9(X) , x r X
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d (i) I I x))

If n-ary composition operator ( over T(X) is defined by, for

all Ce gP(X) , x e X,

q€; f(C) (X)  1 f( Cl1(x)) .. . C n(x)) ,

then it follows that for any statistically independent choice func-
tion family S = (S )je I  (i.e., for any A (X) , the Sj(A.)'s

are all statistically independent), ( * S) is a w-hom.

In [91] (Theorem 6.5 and Corollary 6.2), isomorphic-like re-
lations were established between fuzzy partitionings - and in
particular, between weighted sums of membership functions and random
set partitionings:

Theorem 4. (Weak-Homomorphic Representat'ins for Fuzzy
Partitionings.)

Let K 9 (1. m) and let B ! (B.)jeK  be a fuzzy partition-
ing of X , i.e.,

Z B (x) = 1 , for all x e X
jeK j

Then T 1 )(B) d (T (1) ())jeK is a random partitioning of X
i.e.,

1 = Pr(X = U T (1)(B ))

with each T (i) being a T-type choice function:

T( 1 )(B) t B ; Tj ( )(B) B',g E K

may be constructed as follows: Let

dV(B) = (V j,x(B)) j.K  be a zero-one process where,

xe X

V 1 x( ) d W,x (Bi)

V j,x x(B)~ (I - W , x (B 1 )) . (i 1  , J 1 x (B j_1)).Wj ,x (B ) ,

for J = 2. m-i ,

V Mx() (1 - Wi (B))... (I - Wmx (Bm)) where
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(WjX (Ba))JeK  is a statistically independent zero-one process

Xe X
m

with Pr(W mX(B J ) = 1) = B.(x)/IZ. B.(x) j E K, x e X Then
3 1=3 1

define P T () - V.X (B), j e K, X e X thusdein i'I)(B) -J ,x
TJ ~

= VIB) , and T( 1 )(B) = c-I(v(B)) , € being the I - I

xonto membership function mapping 9 :(X) -* (0,1)

Corollary (Weak-Homomorphic Representation for Weighted Sum
Operator.)

For any constant ,O - r :5 1 , define

r e q:(X) by (x) - T , for all x e X Let K d{1,...,m) and
r

let 0 < A . < 1 be arbitrary constant, j e K , with Z A . = 1
3 jeK 3

Let ( A jeK Define the extended weighted sum operator

K
wtdsum A : (X) -_(X) , by, for any

Ad (A.)jeK I A " e 9(X), j e K, x e X ,

(Pwtdsum A( () -j4EK PA~ ( jeK v.A j ~~)

where f is determined by *& = prod. Then

1(1) d (T (1))jeK and T (2) d (T (2))jrK are two statis-

tically independent T-type choice function families such that

(1)(0 A ) is a random partitioning of X and

wtdsumA (A) U (T 1 (1)( A ) n T (2)(A))
w ( jeK j

T(1)(B) is the same as in Theorem 4 with B replaced by 0 A

T (2)(A) = (T j(2)(A ))j K  is such that ( (2)(A )) is a
(2) x))jeK i

T j xEX
statistically independent zero-one process which is also indepen-

dent of T(1)(0A) such that
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Pr(p( 2 ) (x) = 1) = IA (x) , for j e K , x e X

The proofs of Theorem 3, Theorem 4 and its corollary can be
found in Goodman [l].

When there is no confusion, unless otherwise indicated, we will
use the same notation for ordinary set operations and their general-
ized set extensions.

Summary

Thus, in summary, any generalized subset A of X may be con-
sidered as a weakened form of a random set S ; A corresponds to
the collection of all random sets one-point coverage equivalent to
it. At the same time, the corresponding possibility function of A
may be considered as the evaluation function of a random variable,
over an elementary event space, for corresponding compound events
which may be identified with the elements of X . By choosing par-
ticular random set representations for generalized sets, isomorphic-
like (or "weak-homomorphic") relations may be established between
generalized set and ordinary set operations, etc.

One application of the above can be made to the use of a panel
of experts in obtaining distributional information concerning a col-
lection of objects (such as possible classifications of a ship) when
the values of the "distribution" do not add up to unity - often the
sum will exceed one). It does not mean the laws of probability are
being violated nor should normalization be carried out to make the
"distribution" formally a legitimate one. Indeed, the distribution
represents probability values of properly chosen compound overlap-
ping events which the panel as human integrators of information in
effect tacitly employ - or equivalently the distribution represents
coverage probabilities of a suitably implicitly chosen random set of
interactions. (See Chapter 9 for more details.)

Finally, note that the field of random set theory is not as
well known as other branches of probability theory. For background,
see the general works of Kendall [137], Matheron (1713 and Ripley
[217]. See also Cressie [43), Ripley [217) and Artstein and Vitale
[7] for results concerning random set versions of the Laws of Large
Numbers and the Central Limit Theorem.

0
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CHAPTER 7

SOME THEORIES OF UNCERTAINTY

In this chapter, we discuss different approaches to the problem
of uncertainty modeling. These include Manes' distributional
theory, Watanabe's system, Gaines' uncertainty logic and Schefe's
agreement probabilities.

7.1 Introduction

Generalized set theory in its general formulation, as mentioned
previously, already Is an extension of probability theory over dis-
crete spaces. (Thus there may be no need to construct systems which
formally generalize both fuzzy set theory and probability theory).
This is true by simply recognizing that:

(1) All probability functions p (over a discrete space) are
also possibility functions (but of course, not conversely).
(Indeed, all cumulative and anti-cumulative distribution functions
are also possibility functions.)

(2) The usual probability operations may be interpreted
through the particular fuzzy set system

= I (1-(-),prod,sum) ,

noting the operation sum is the same as bndsum (or maxsum) over the
cone of all probability functions.

(3) Complete analogues (as mentioned previously) may be es-
tablished between the concepts of joint conditional, marginal and
(via Bayes' theorem) posterior possibility and probability func-
tions. Hence, all possibillstic forms will reduce to ordinary
probabilistic counterparts when 9' is employed with respect to
probability functions only. This may be summarized by the many-to-
one correspondences (over spaces):

p-possibility function .-. p-probability function

'not 1 - (.)

& -prod

'or sum

(4) It should also be mentioned that an obvious interpretation

* of any probability measure Pr over a a-algebra % of subsets of

425
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its base space X Pr : % - [0,1] is a fuzzy set membership
function representing a fuzzy subset of % .

(5) On the other hand, note that probability theory is not a
truth functional system as Zadeh's fuzzy set theory is. (See the
remarks in 7.4 for Gaines' system. See also section 2.3.9 (A).)

Figure A presents some relations between various logical
systems.

In the wake of the criticisms of Zadeh's Zuzzy sets, several
systems have been developed which simultaneously extend both Zadeh's
original formulation of fuzzy set theory and classical probabilistic
concepts. Among these are Hirota's "probabilistic sets" [111] -
essentially, randomized fuzzy sets (perhaps more accurately, ran-
domized fuzzy set membership functions), and the large literature
devoted to fuzzifying probability spaces and random variables. (See
the survey in [51], as well as Kwakernaak [148] and Klement and
Schwyhla [142].) Manes [169], based upon his previous work with
Arbib [5] in developing category theory models for fuzzy machines,
used a form of the Kleisli category theorem [165] in deriving a very
general theory of distributions which extend not only Zadeh's (min-
max, etc.) fuzzy set concepts and classical probability relations,
but also generalizes the basic structure of topological neighborhood
theory, credibility theory and other approaches to the modeling of
uncertainties. (However - see Goodman and Nguyen [92] for a
characterization of Manes' system which shows that although it
generalizes Zadeh's original concept of fuzzy set theory, it is not
compatible with more general fuzzy set systems (Onot' 0&' Oor )*

See also the following section.)
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7.2 Manes' distributional theory

A. Summary of Manes' basic work.

Manes [169] developed a theory of "fuzzy" theories as an out-
growth of his earlier work (5].

1. Consider the category SET.

(a) Given a monad (T',e,p) over SET, i.e., T SET -# SET is a

functor and e :Id -L T and M : O -L T are natural trans-
forms satisfying certain commutative relations (see, e.g., S.
MacLane [165]), then by defining # , where for any sets X,Y and
a e Ar(X,91Y))

#(a) - (y)*T(a) e Ar(T(X),T'(Y))

then K T is a category -the Kleisli category associated with T

(again, see [169]) where

Ob(KT.) = (T(X) IX any set)

Ar(K.,) = {(a) Ia 4 Ar(X,T(i) , X,Y any sets)

with composition o defined by

#(J3)*#(a) = (#4 a (M3)

and with identity maps

#(e(X)) - idTX (M2)

and finally, with the relation

#(a)oe(X) = a ; (Ml)

holding for all a Q Ar(X,T(Y)) ,all Ai e Ar(Y,TiZ)) , and all sets
X , Y , Z .(MI) and (M2) imply e(X) Is uniquely determined.

(b) Conversely, given a mapping T Ob(SET) -# Qb(SET) a mapping
e :Ob(SET) -& Ar(SET) ,where for any set X , e (X) e Ar (X, T X))
and mapping

U Ar(X,T(Y)) -. U Ar(T(X),T(Y)) satisfying (Ml)
all sets all sets

xly xly

(M2) , (M3) .Then by defining pu Ob(SET) -4 Ar(SET) by, for any
set X,

PM4 #(id T(X))

and defining for any f a Ar(X,Y)
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'ITf) L= #(e(Y)of) e Ar(T(X),7(Y)),

and composition via (M3) , it follows that 7 Is a functor,

e :id -" T and y To -.L- T are natural transforms and (T,e,p)
Is a monad, etc.

Manes calls (T,e,#) a theory, when case (b) holds (which is
thus equivalent to specifying monad (!,e,p) and case (a)). T is
the distribution map, e is the Imbedding map and * is the domain
extension or lifting operator. This Is motivated by the special
cases presented next.

2. Some specializations of the general case.

(i) For any set X

T() [0,11X is identified with 9; X) , the class of all
fuzzy subsets of X

e(X)(x) - *{x) (relative to X );all x e X

A (y sup min ((PA(x), % (y))

for any a :X -* %(Y) ,any A 6 V(X) and any y e Y
Thus, if f :X -. Y for any sets X Y ' , it follows that

T(f) may be Identified as the operator 'if) 9(X) -* V(Y) , where
for any A a I(X),

Tif)(A) = 'k(A)

where (see also 2.3.7)

*P. (y) = sup WAx)
f(A) -1(A

i.e., t is the Zadeh fuzzy set extension of f .More generally,

if A 4 V(X x Y) , B 6 5Yx Z) since the identifications

A *-4 (a A :X - ViY))

where for any x e X ,y e Y,

(a A(X))(y) = *A(x'Y)

and similarly

B *--. (a B Y -4 9 (Z))

may be made, then (M3) implies that composition eis the same as
fuzzy relational product
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1(A) (x,z) = sup min (0A(x,y), B(Y,z))ft (A)yGY

for all x e X , z e Z , which is an associative operation.

(Ii) For any set X :

TX) = (p I p : X -* [0,1] & p is a finite (supported) pro-
bability function over X) ,

e(X)(x) 9 0 W (relative to X) ; all x e X

(#(a) (p) (y) 2 Z (p(y).a(x)(y)) , for any a : X - T(Y) , all
xe X

yE Y

In this case, for any f :X - Y , for any sets X and Y,
S(f) : T(X) -* T(Y) , where for any p e T(X) and any y e Y

S(f)(p)(y) = f p() ,

i.e., T(f)(p) is the probability function of r.v. f(V) where
r.v. V has prob. function p

(iii) For any Set X :

M(X) 9(X) , the class of all ordinary subsets of X ,

e(X)(x) x) ; all x e X

(#(a))(C) = U a(x) = a(C)
xE C

for any a : X I 5(Y) , and any C e 5(X)

Manes calls this case "possibilistic" set theory.
Manes also specializes theory (5,e,#) to a number of other

systems including "crisp" set theory with T(X) = X , priority
theory, credibility theory and topological neighborhood theory.

3. Additional comments.

Thus Manes cleverly shows that the concept of a Kleisli cate-
gory associated with a monad over SET is sufficient to describe not
only Zadeh's fuzzy set theory and classical discrete probability
theory but a number of other theories of uncertainties. He obtains
a number of basic properties common to all of these theories. In
summary, this includes:

(a) Development of maps between theories as essentially "natural"
(i.e., commutative-form) mappings between the three corresponding
components of theories, which, following category theory concepts,
is specialized to quotient or surjective types, subobject or injec- 0l
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tive types, and, further, to isomorphisms (which are characterized
as both surjective and injective types). Also, cartesian products
of theories are defined in the obvious way. Examples include: for
any fixed A e [0,1] , consider the level set mapping TA , where

for any set X and any A 6 1(X) , TA(A) =A 1All] yields

(TA,e ,#A) as a quotient theory of Zadeh's fuzzy set theory, where

e(X)(x) = {x) , all x e X , and for any a : X -* T(Y)

TA(a) : X I(X) where for all x e X , TA(a)(x) - TA(a(x)) , and

for any A e 5(X) , and thus 4A[A,1] Q 9(X)

# PA [A,1]) = (#(a))(4 A)) A(,i] .

On the other hand, (f,e,#) where
r(X) = (A I A e 9(X) & sup *A(X) = 1) , for any set X is a sub-

xG X
theory of Zadeh's fuzzy set theory. (T(X) is the class of norm-
able membership functions.)

(b) Development of equality and membership relations:
Define for any theory Z = (T,e,#) , ({O,i)) as the theory

truth values. Define the general membership function * , for any
set X , f(X) : T(X) x T(X) -* T({0,1)) , by, for any
C e T(X) , A a T(X) ,

f(X)(C,A) = f(X)A(C) 9 T(Pc)(A ) ,

C : X -* (0,1) ordinary membership function of C
Define the equality map eq , where for any set X

eq(X) : T(X) x T(X) -# T({0,1)) where first for any x E X and
A e Tf(X) ,

eq(X)(e(X)(x),A) = T(O(x}(A))

and for any A,B a T(X)

eq(X)(B,A) - (#(r( (.) (A))))(B)

Alternatively, Manes could have developed a one-branch truth
theory based on T(M)) Instead of ({O,;)) evaluations are
similar for only this one component. (The idea of using T(0,1) is
based on Gaines' earlier approach.) Or, one could choose any number
of values 0 - a0 < -- < an = 1 and use T({a01 ... an}).

For Zadeh's fuzzy set theory

T(4Pc)(A) -c(A) ; all A 9 (X) , C E 9(X)

where (c(A) 4 5(0,1) ,
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(Pc(A) 101 =, sup_ 1  ((PA(X)) = sup 'PA(X)

OCxE)C (0) x*Ct c(A)(1 ) = sup_ 1  (PA(X)) = sup A(X)

IXe(Oc (1) xQC

and for any A,B e 9(X) , eq(X)(B,A) E 5(0,i)

Peq(X) (B=A) (0) SUP min (4A(X), OB(y))r X,YE XX~y

eqX) (B A) (1)1= sup min ( A(X), BX))
', XE X

For discrete probability theory, T(,C)(p) is the p.ubabil-

ity function of r.v. 4c(V) where V is a r.v. corresponding to

probability function p e T(X) , i.e.,

c(V) = 1 iff V e C

c(V) - 0 iff V f C

and hence

S(¢c)(P)(O) = Pr(V 4 C) = Z p(x) = 1 - z p(x)
xdC xEC

and

S(Oc)(p)(I) = Pr(V E C) = z p(x)
xG C

For any p,q e T(X) ,

eq(X)(p,q)(0) = Z p(x)q(y) 1 - Z p(x)q(x)
x,yeX xex
Xli y

eq(x)(p,q)(1) = z p(x)q(x)
xd X

(c) Manes defines

I. eq(X)(p,p) as degree of vagueness of p e T(X)

II. A theory [ = (5,e,#) is anti-reflexive iff for all

sets X and A 4 T(X) , if eq(X)(A,A) - I , then
A = e(X)((x)) for some x e X , i.e., A is "crisp".
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III. A theory Z has symmetric equality iff for all sets

X , and all A,B e r(X) ,

eq(X)(A,B) = eq(X)(B,A)

IV. A theory Z satisfies the eigenstate condc Ion iff

for all sets X and all x e X and A e T(X) , if
(X)((x),A) =_ 1 , then A is crisp where A = e(X)(x)

V. FL'- any set X

Prcp(X) = ( (0,1}) ,

is defined as the class of all propositions over X A
theory T is faithful iff for all sets X , the mapping

p(X) : T(X) -* Prop(X)

where for any A E T(X) , and x E X

(p(X)(A))(x) = @(X)({x),A)

is injective.

VI. A theory Z is propositlonally complete (or separating)

1ff for all sets X and any A,B e T(X) , A * B , there
is a 4 Prop(X) such that

(#(a))(A) 0 (#(a))(B)

VII. A theory 9 is consistent iff T is injective relative

to Ar(SET) or equivalently, iff for each set X
e(X) : X - 5(X) is injective.

VIII. A theory 9 is noise-free iff ,

IX. A theory 9 has crisp points iff fc:t -!y set X

x 6 X , 9({x)) = x}

A number of the above definitions have direct category theory
counterparts (for example, "faithful" in V).

It follows that: any faithful theory is propositionally com-
plete and if f e Ar(X,Y) is injective (bijective) so is 9(f)
(bijective). Any consistent theory with crisp points is noise-free
and a theor, has crisp points iff for all sets X , and A E T(X) ,
P(X)(A,A) 1 I. Any theory has a largest subtheory with crisp
points. Zadeh's fuzzy set theory, finite probability theory and
possibilistic set theory satisfy conditions II - VIII. Probabilistic
set theory has crisp points but Zadeh's fuzzy set theory doesn't,
nor does possibilistic set theory.

(d) X0-ary operations and hon1omorphisms in Manes' sense:
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Fix theory = (,e,#) .

Fix set X Then there is a bijection pX between T(Xo )
0

and Q(X O) where for any A E T(X 0 ) :pX (A) e Q(X o ) , where for
0

X
any set Y p X (A)(Y) :iY) -+ '(Y) where for any a X 0-* ° (Y)

00

(pX (A)(Y))(a) d (#(a))(A)
0

Q(XO ) is called the class of all (abstract) X0 -ary

-operat ions.

For any sets X , Y and f : T(X) -# s(Y) , f is a homomorphism
w.r.t. X and Y and T , Iff for any set X , any A e 9(X o )

and hence any pX (A) e Q(Xo)
0.0

fop. (A)(X) = pX (A)(Y)(fo())

o 0

iff f = #(a) , for some a : X -4 e(Y) in which case a may be
arbitrary in general and

a = foe(X)

For any sets X l ..... Xni Y and f : (X1)X ... X(Xn) - (Y)

f is an n-homomorphism Ifre all marginals fj :(X ) -. T(Y)

j = 1,...,n of f are (I-) homomorphisms.

(e) Joint distributions and independence.

Suppose T = (5,e,#) is a theory.

Let a : X XX 2 -+ T(Y) be arbitrary for any sets X1, X2 , Y

Then define a(l) , ((2 ) slX 1 ) x s(X 2 ) - T(Y) by

a(l) = I )  A2 G(X 2 )

a(2 )  = (#(((#(a( ,x 2 ) ))(A 1 ))x 2EX2))A E (X )

a 1 and a 2  are the natural component-wise ways to extend a via

# Similar constructions hold for any a : XX ...XXn - T(Y) If

a(1) ... a (n) ' denote the common value by a ; a is the basic

commutative domain lifting or extension operator for a
It can be verified by use of (M3) that for any a as above,

a(1) (e(X l )e(X2)) = a (2)o(e(X 1 )xe(X 2)) = a s

In particular, consider a = e(XIxX 2) for any sets X1 , IX 2

'0
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Then, if e(1)(X 1 XX2 ) = e( 2 )(XIXX 2 )

e(X 1 x X 2) : IX1 ) x T(X 2) (X 1 x X 2 )

is called the Independence map and

Ind(X1 x X2 ) - {e(X1  X 2 )(A x B) j A e T(X 1 ) , B e (X 2 )}

is called the class of all independent distributions of X1 X X2

Manes showed for any theory T :

(i) For all sets X 1 , X2 , e(X1 x X2) exists and is thus a

2-homomorphism iff

(ii) For all integers n Z 1 , and sets X1 ..... Xn , Y and any

a : X x X 2 x ...X n +(Y) , :(X 1 )x..xU(X) T(Y) exists and is

an n-homomorphism, iff

(iii) For any sets Xo 0 fY and all A e s(Xo) , B E T(Yo) and

any set Z ,

Px (A)opy (B)(Z)o - py (B)(Z)opx (A)o

for suitable composition arguments, in which case T is called a

commutative theory.
If 7 is a commutative theory:

(I) For any a : XXx.-.xXn + Y

aoe(X )x.-xe(Xn) = a

(II) For n = 2

#(a)o-(X 1 x X 2 ) =

(III) For n = 1

#(a) =a

which justifies a being also called the n-homomorphic extension of
a , although #(a) is also an extension of a (but not n-homo-
morphic in general).

(IV) The equality mapping for T is symmetric.
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(V) Z has crisp points iff for all sets X andY,

e(X x Y) : iX)xT(Y) - T(X x Y) is injective.

(VI) Let Xii*... x n Y be any sets and let f :X~x IX.. XX n +
n t 1 , all be arbitrary. Then, define the n-homomorphic extension
or basic commutative multiple domain and range lifting or extension:
f :r(X 1)X. .. *xT(X n T(Y) by

T= (e(Y)of)-

analogous to

Tif) : T(X1 X... X) -n ,( defined by

T(f) = #(e(Y)of)

Thus the operator extends Zadeh's fuzzy set extension
principle.

(VII) It follows that Zadeh's fuzzy set theory, finite probability
theory, and possibilistic set theory as well as other theories are
all commutative theories.

In the following, let n 2: 1 be any integer and Xl,...,Xn 'Y

arbitrary sets;

(i) Zadeh's fuzzy set theory:
For all A e 9(X) , B e 9(Y)

-i(X x Y)(A,B) = A x B,

i.e., for all x * X , y e "f

_(x,y) = min ( A(x), 4(PBy))
e(xxY) (A,B)

For any a : X 1X ... XX -# 9:(Y)

and any A i e 5(X i) , J = 1,...,n, and any y e Y

(Y) = sup min (PA (x 1 ),.. ' A (Xn),(P (y))
a (A , . ..,A ) [;i ex l ay.,..n] n

and hence for any f : XX...xX n -+ Y , any A~ 1 E(

j It 1.. .n , and ar.y y e Y ,letting a = e(Y)of
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.... An)(Y) = sup mX (OA1 (x).... VA (xn))

J=1,.....n,
f(x i ..... Xn)=y j

(ii) Finite probability theory:
For any (probability functions) p e T(X) and q e T(Y)

and all x e X , y e Y ,

i(X x Y)(p,q)(x,y) = p(x).q(y)

i.e., e(X x Y)(p,q) corresponds to the ordinary statistical-
ly independent joint probability funcions.

For any a : X 1 x...xXn - T(Y) , and any pj e T(Xj)

J=1...n , and any y e Y,

a(P1 , ... Pn ) (y ) = X- Pl(x 1 )
'.P n (xn ).a(xl ..... x n)(y)

J=1,.....n

= E(a(V1 ,...,V n )(y))

with Vi , r.v., corresponding to probability function Pj

j = 1,..., n ; all V 's being statistically independent.

Hence for any f : X .. xX , and pj E (Xj)

j = 1,...,n and any y Y ,
t(Pil .... 'Pn)(Y) = Px![ I  ,n'X )y p (x 1) ' ' '.p n (x n )

(iii) Possibilistic set theory:
For any C e 9(X) , D e ?(Y)

e(X x Y)(C,D) = C x D

For any a : Xx-. xX n (Y) , and any C E (X),
j = 1.. . n ,

1,...,n.,x
a(C I l .... ICn) U a(xl,..... Xn)

[ iCJ'n]
J=I .....

Thus, for any f : XIx...xX n _Y , and any C. e 9(X

j = 1....n
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t(Cl...C n U (f(x 1 ... ,xn)) = f(Ci X-eXC n)

(VIII) In particular, consider for any integer n I

Bool n { f I f :(0,1)n _ (0,1))

the set of all classical n-ary truth functions or Boolean
polynomials and define

B'Ool ~ ~ f e Bool1

Hence, any e Bool n is such that

f :(T({0,1))) n. T'(0,1)) Is the n-homomorphic extension of truth:

function f :(0,11 n-_ (011)
In particular, consider the classical Boolean polynomials:

n 2 f=& : &(0,0) = &(1,0) = &(O,i) = 0; &(1,1) = 1

n =2 :f =or or(0,0) =0 ;or(1,0) =or(0,1) = or(1,i) = I

n I f =not not(0) = 1 ,not(1) =0

n =1 f =Id :id(0) = 0 , id(1) = 1

Then for

(a) Zadeh's fuzzy set theory, It follows for any n Z 1 and any

B'OB~cl n , any A 5((0,1)) ,j =1,...,n,

A Y sup min ((A (x1)D" 4PA (x n))
?(Ap .. An) rX 1 1 ... ,x ne(0,1) withi 1

[f(x 1 t .. ,xn) = y J

for y e (0,I)}
Thus, for n = 1 and any A e 9(0,1)

0d()(0) =P(O A i 0 (A (1) = (Al

Td(A) s A

but note

nt(A) (0) = A ~l) 0 'A (1) = (A O

For n = 2 , and any A1 , A 2 E~0
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&(A1,A 2 ) (0) = max(min( (A 1(0), PA 2(0)), min( (A 1(0), PA 2(1))

mi ((A1 (1 '(A2( ) )

P,() = min (), A(1))
(A 1 ,A 2) 1 2

(P, ~ (1) = max (min( (A (1' A (1)), min( OA (1)' OA (0))
or(AI ,A) 1 2 1 2

min(O (0), PA 2(1)))

(b) For finite probability theory:
For n = 1 and any p e ~(,)

Td(p) = p

and

at(p)(0) = p(l) ; n~t(p)(1) =p(0) =1 - p(1)

For n = 2 ,and any p,q e ~01

&(p,q)(1) =p(1)-q(l)

&(p,q)(0) I - p(1).q(1)

or(p,q)(1) 1 - p(0).q(O) = 1 - (1 -p(1))(1 -q(1))

=p(1) + q(1) - p(;)q(1)

or(p,q)(0) =p(O).q(O)

(c) For possibilistic set theory:
Note that 1(0,1) = (0 (0{), (1), (0,1))

For n - 1 ,and any C 9(0{,1)

Id(C) C ,

n8t(0) =0 , not({0,1)) = (0,1)

not({0})= (1), not({1)) = (0)

For n = 2:

& is symmetric and

&(0,0) = &(0,{1)) = 0

&(0,0))= &(0z,(0,1)) = &()()
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= &((O),()) = &((o),(0,l)) = (o)

( (1)

1= (o, ),(o,1)) = (0,1)

or is symmetric and

8r(0,0) = 8r(0,(o)) = 8r(0,(o,i)) = 0

8r(O,(1)) = 8r((o),(I}) =8 (1} (

=r({i),{oi)) = (1)

8r((o),(0,1)) = 8r((0,1),(0,1)) = (0,1)

Manes interprets:

0 = "undefined" (1) = "yes"

(0) = "no" (0,1) = "maybe".

B. Major issues concernina Manes' theory.

Manes' extremely attractive theory of "fuzzy" theories essen-
tially postulates that all of these theories (Zadeh's system, finite
probability theory, etc.) have the form of a monad and the associa-
ted Kleisli category relative to SET. However, these results - as
typical of a category theory setting - depend to a degree upon
commutativity of operations. This can result in rather restrictive
applications relative to general fuzzy set theory as developed here.
More specifically, the following result holds:

Theorem (Goodman-Nguyen) [92].

Let I = ( not' 'P&' Oor )  be an arbitrary generalized (fuzzy)

set system.
Define T by, for all sets X

T (X) 9 (X)

Define e by, for all sets X

e(X) : X o 9(X)

where for all x e X ,

e(X)(x) = (x)

Finally, define # by, for any sets X , Y , and
R e I(X x Y) ,

#(R) : 9(X) -* 9(Y)

where for any A E I(X) and any y E Y
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(R ()(Y =- RA (Y)

= 4or(a('A(X)' 'OR(X'Y)))(1
Xe X

This definition is also motivated by [O,1J-logic considerations as
the evaluation

1I (y e Ra A)11

= I((aX)((x e A) & ((x~y) e R)))I

through IF (See Chapter 2.)
Then for these definitions for T, e and #

(a) Axioms (MI) and (M2) hold.

(b) Axiom (M3) holds
'f aIs right distributive over 4or i.e.

*&,(a, Oor (b,c)) = 'Oor (0,(a~b), 0,(a,c))

all a~b,c e [0,1] (2)

If f composition o is associative

So(RoP) = (SoR)*P ; all R, S, P,

where

P e 5(W x X), R e %(X x Y), S e I(Y x Z)

all sets W, Xo Y, Z ,where composition is typically given in eq.
(1) . In which case u~= (T,e,#) is a theory in Manes' sense.

Proof (2): For any sets X, Y, Z , for any R e 9(X xY)
S e 5(Y x Z), A e V(X) ,x e X , y e Y , z e Z:

LHS(M3) = or( Oa o() O5 (YZ))) ,(3)

(left hand side of M3) yEY

RHS(M3) = or(O&(pSoR(x'z). OA(x)fl (4)
(right hand side of M3) KEX

where *RoA (y) is given in eq(1) and

OS.R(x'z) = o(&O(') OS(Y'z))) .(5)

ye Y

If 0&is right distributive over Oor 'then

is
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Sa(PR.A(y), Os(y,z)) = Oor(M(xy'z)) (6)

XE X
where

4)M(x,y,z)) 2 4&(OA(X, YRX,y), (Ps(y,z)) ,(7)

and

a(OSoR(xz), 4A(X)) = 4or(cM(x,y,z)) (8)

yeY

Hence, substituting (7) into (3) and (8) into (4) yields

LHS(M3) = @or ( M(X,yz)) = RHS(M3)
XE X,
yEY

Conversely, if Axiom (M3) holds, choose A - X = {x1,x 2)

y = {y} , R(xly) = b , 4R(x2,Y) = c , 1s(yz) = a , otherwise

arbitrary. Hence eq.(2) holds.

As a consequence of the above theorem, since as a check,
Zadeh's system 9o = (I-(.),min,max) and 1' = (1-(-),prod,max)

are always right distributive, both satisfy (Ml), (M2) and (M3)
and yield Manes' theories. On the other hand,
91 = (l-( • ),prod,probsum) , :" = (i-(.),prod,minsum) and many other

systems such as non-Archimedean semi-distributive ones are in gen-
eral not right distributive and hence are not compatible with Manes'
theories. The latter class of systems plays a key role in the
weak-homomorphic approach to fuzzy set systems (see Chapter 6).

Although the above theorem shows composition with respect to
binary fuzzy relations for general fuzzy set systems is associative
iff right distributivity holds, it is always true that functional
transforms for general fuzzy set systems are always associative
since the *P operator is not used here:

For any f : X - Y , g : Y - Z , h :Z - W , X, Y, Z, W any
sets, associativity holds

ho(gof) = (hog)of

where, e.g., for any A e V(X) , y e Y

Pf(A) (Y ) = (or y) (1A(X))
xcf- (y)

and any z e Z t

(gof) (A) (z) = 1 OA(x)
or-1

X (gof) (z)

= or 1  (or 1 IAx))
x~f (y) y-g (z)

= g(f(A))(z) O
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etc.

A basic question then is to determine which of Manes' develop-
ments are compatible with general fuzzy set systems: in particular,
when can axiom (M3) be eliminated?

Eytan (57] (despite his mistaken idea that Fuz(H) is a topos
- see [29] or (204]) compares Manes' approach with his own which
utilizes Coste's construction. (See also section 2.4.) Both ap-
proaches rely on commutativity of basic system operators, which as
stated before, may be somewhat restrictive. Further effort must be
expanded in comparing Manes' approach, Fuz(H) and Higg(H) (see
section 2.4) and in determining what extensions to general fuzzy set
systems are possible.

Next, suppose that Manes' theory is replaced by the following
generalized logical system type theory:

: SET - Ar(SET) attribute or dispersion operator,

e SET . Ar(SET) imbedding operator,

t: Ar(SET) -. Ar(SET) lifting operator (modified)

are such that for any X, Y, Z e SET , T(X), (Y), T(Z) 0

(a) e(X) : X -+ (X)

where for any x e X

X
aX = (e(X))(x) e T(X) 9 {0,1)

(b) rt(y ) : Y X , g(y) (X)

where for any f e yX slightly abusing notation,

r(f) 4 Ot(yXll(f)

(c) For any A e T(X) and x e X

(f(e(X))(A))(8x)) = A(x)

(d) For any f e y , x G X

t(f)(8x )  = 8f(x)

(e) Recall that id : SET - Ar(SET) where for any X E SET

id (X) : x - X

where, for any x e X

id(X)(x) x

Then

I
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n(id)(X) = id(T(X))

(f) For any x e X and any tA E T(X) 

(t(8x)(4A))(1) = OA(X)

X Y X
(g) For any f E Y , g E Z noting the composition gof E Z

if(gof) = 1t(g) 0 n(f)

implying tt is a functor.

Examples.

Ex. 1. T = T (i.e., no restriction).
Pick I = (0 not' P&' or )

Define, for any x,y 6 X

(a') 5 x(y) = 8x,y (Kronecker delta)

and for any f a Y A e 9(X) , y G Y

(bW ) (tt(f)( A))(y) g or I ( PA(X))

xEf (y)

i.e., 50
n(f) = f (relative to por)

Then for any OA e T(X) , x e X

(c') (tt(e (X))( A))(a A )

= Or (A(8))

(8ee(X) (8x))

= cA(x) ,

since e(X)(x) = 8x , uniquely.

X

(d') For any f e y, x Q X, y e Y

(ri(f) (x) ) (Y)
or x

0
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1, ..0) = I , if x e f- (y)

= or (-.0.1 0,.. ,0) = 0. if x t f- (y)

= f(x) (y ) '

(e') For any OA e %(X) , x e X

(rT(id) (X)) (OA)) (x)
= O~or 1 ((PA{s))

(seid(X) W(x))

= OA(x) ,

since x = id(X)-l (x) , uniquely.

(f') For any OA e (X) , x e X

(tO(x)(A))(1 = or -1 (OA(s ) )

(sea- M))

= OA(x)

since aX(x) = 1 uniquely.

Note also here that

(tt(ax) (OA ) ) (0) = @Or_ l  ()a (s)

sea x (0)

= Oot (rA (s ) )

(seX-4{x))

(g') For any f e yX , g e ZY  E X) , z e Z

(tt(go f)) (OA) (Z)

= Por (= I)or (OA(s))
se(gof) (z) sef (g (z))

= or' (Oor A(s ) )  = (t(g)((f)(A))(t)
teg (z) sef (t)

provided 0 or is associative.

Ex. 2. T(X) = 0 if X S R , etc.

For T(X) # 0 , let

p



446 Goodman and Nguyen

T(R) = (F I F is a c.d.f. over R)

Let 4)not = - )

Pa = r-copula, etc., by Sklar's theorem (2.3.6).

Define, for any x,y e X

SX(Y) = Hx (Y) (heavyside function)

=[0 Iff y < x

1 iff y a x

and for any f e Y , F e 9(X) y e Y

(f(f)(F))y) = Pof(R

where p. is probability measure over B determined by

c.d.f. F and R a [a,+-) (right ray), etc.

Then

(c'') For any F e T(X) , xE X

(t(e(X))(F))(H x ) = pFoe(X)- (RH  )

where the natural ordering of c.d.f.'s by RHx is given as

RH {G I G is a c.d.f. over R , with G > H ,
xK

since the rth moment m (G) < M (Hg) all r > 0

and hence

e(X)-I(RH ) { I y E R & Hy H x  = (--,x)

and thus,

PFOe(X)- (RH ) PF(--,x) = F(x)
x-

(d'') For any f yX x e X , Y e Y

(tt(f)(H x)(Y) =(H of-l)(Ry) = Hf(x) (y) (essentially).x f~x)

(e'') For any F e sX) , XE X

(f(id)(X)(F)(x) = (p11id(X)- )(R x-) = PFO(RX) F(x)x PFO(

... , I II l II0
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(f'') For any FE e (X) x Xe X,

(tt(H 11(F) )(1) =i 0 -( in01

F Fx 1

= PFx)

=F(x).

Note that

=PFOH x 1(R 0 -(in(0,i)))

P F(Hx1(0))

0 .

(g'') For any f eY , g e z FE e TX) z Ze Z

IT (go f (F) (z) = po (gof 1 (R) z (/JF(f1(g-1CRZ)))

=j (M (g 1(R z) ) = f(g) it(f) (F, )(z) = tf(g)or(f) (F) (z)

Ex. 3. Manes' system revisited.

Suppose once again (T,e,#) is a given Manes tXizy.
x

Thei. define tt by, for any X,Y e SET a;±u f e Y

(P r(X) I

d I

Consider:

(d' '') TM~)(6 X)= (#(e(y)of)H ) 6 (e(Y)of) (x)

by (MI)

8 f(x)

(e' '') "-(id)(X) :#(e(X)oid(X)) #(e(X))

= id(T'(X))

by (M2),

(g' ... ) n(gof) = #(e(Z)ogoi )

No~v

-tt(g)ott(f) = #(e(Z)og)o#(e(Y)of) =#,#(e(Z)og)oe(Y)Of)
by kM3)
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= #((e(Z)og)of)=tof) .

using (M3) and (Ml)

In general, c) and f) from part (2) will not be satisfied
for Manes' theory.

However, if we define # by

For any R : X - (Y) , #(R) : (X) - rIY)

where, for any A E T(X) and y e Y ,

(("R)) ( A))y) = or(a(A(s), (Ys))(y))

sEX

ard hence for any f : X -# Y , TA E (X) , y E Y

d(tt(f))( A ))(y) = (#(e(y)of)) ( A)(y)

- #or(( A (s), e(Y)(f(s)))(y)))

seX

=or 1 (A
(S ) )

sEf (y)

(Note: e(Y)(f(s))(y) a f(s) (y ) )

(ff''') For any 4 A e 5X) , X e X
(tt ( x )  ( (PA )) 1

seX

= 60 for s x (1)))
seX

Irl for s = x,
0 for s xi

seX

= CA(X)

Also:

(c' ) For any PA e T (X) , x E X

(il(e (x) ) (C A)} (6x )

= ((#(e(9(X))oe(X)))( A))(x)

= $o ( {A(S , (e(CX) )oe(X) ) (s) ) (6x)
sEX

6
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(Note: (e(Tr(X)ee(X))(s) = 6 and (e(T(X))oe(X))(s))(6 8
asX 5,X

In addition, # as defined above also is such that:
For (Ml) : For any a :X -4 r(Y) and any x e X

((#(a))oe(X))(x) = #a) )

sex

=a(x)(-)

Thus (Mi) holds.
For (M2) : For any AE e(9M , X e- X

(#((X)) )())= 0 or((PAs , e(X)(s)(x))) c A(x)

Thus (M2) holds.

In addition, note again

() If :R X - T(Y) is such that 3 f :X -. Y where for all

X e X ,y e Y

((PR(x))(y) = 5y,f(x)

then for all eA E (X) , y e Y

= (Por_1  ((PA(x))

= (tf(f)((P A My)

(ii) #as defined above, satisfies (M3) iff, assuming for p

tPr P is right distributive over r~ (such as (min,max) or

(prod, bndslv.m) , in which case fuzzy composition is defined by

PR X -. (Y

s Y - (Z)

S*R :X T(Z)

where for any x e X , z e Z

(' S*R(x))(z) = 'Por(' &(((PR(x))(Y), ( S(Y))(z))

=(((#(S))o(PR)(x))(z)
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'S*R =(PS)R

and * is associative.

C. A modification of Manes' theory.

Many of Manes' Fuzzy Theory concepts simplify when the lift-
ing operator relation

(1) f : X -+ T(Y) to (#)f : (X) -4 T(Y)

is replaced by the relation

(2) f : X -# Y to 11(f) : T(X) T (Y)

For example, for Manes' axiom (M3) , an associativity form of
# is actually quite stringent. It was shown previously that indeed
a general truth functional fuzzy set system satisfies (M3) iff &

is right distributive over or (and hence includes Zadeh's origi-

nal min-max system). On the other hand, it is shown in this section
that with the relation (2) , (M3) can be replaced by a simple asso-
ciative form which holds for all truth functional fuzzy set systems
as well as probability measure systems.

Some additional modifications, in addition to those already
presented in this section include:

1. Theory maps:

A : (T,e,ti) ( ' e ,

is a theory map iff for all X e SET

(i) A(X) : X) -T'(X)

and for all X,Y E SET and f : X -+ Y

(ii) A(X)(8 = 8 , for all x e X

(iii) n'(f)oA(X) = A(Y)-n(f)

In a quotient theory, each A(X) is required to be surjective.

If (,e,n) is a theory and for all X e SET ,

A(X) : T(X) -+ HX is arbitrary, first define TI(X) by (I), for all
x e X , 6 x  by (ii), and define t' by (iii). Thus, (T,e,)fl

and A always induces a unique quotient theory, where A is a sur-
Jective theory map to the quotient theory.

In particular, if (T,e,tt) is a theory, and for all X e SET
C(X) is an equivalence relation on T(X) , then define
A(X) : T(X) - T (X)/C(X) a surjective map which yields a quotient 0
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theory symbolized as (T/C, e/l, n/9) , with A the theory map.
In a subtheory, each A(X) is required to be injective. Then

the converse of the above holds:
If (T',e',ttl) is a theory and for all X e SET

A(X) : T(X) -o ' (X) is injective, then there is a unique way to
define theory (T,e,tt) such that A is an injective theory map
from (T ,e, tt) into (T',e',tt) . In particular, given any theory
(T',e', t) and for each X E SET , define T(X) S TI(X) , then the
mapping

idA (X) : T(X) T(X) 9 T'(X)

with e and n cut down to T , yields an imbedding of (T,e,if)
into (T',e',t') uniquely.

2. Membership functions and extensions.

(a) Consider first any f : X - (0,I) , f E T(X) Thentt(f) : T (X) - T( (0, 1)) .
In particular, for any set C e 9(X) , if C E T(X) , then

t OPC ) may be considered the natural extension of C and hence of

C . Note the range of 11(f) is T((0,1)) not just, e.g., i((i})

(b) Similarly for any f : X -+ H , f E T(X) , 11(f) : 7(X) -+ T(H)
may be considered the natural extension of f and hence letting f

= A' A e I(H), t(A) is the natural extension of A . Again, note

the range of 11(f) being T(H) not Just 7(1) , e.g.

3. Equality Laps.

Note that classical equality between points in a space X is
given by as the diagonal relation

" X x X

and

X xX - (0,1),

where

=(x,y) = 1 , if x - y

0 , if x 0 y

and equivalently the associated function is

Id : X - X .

Then using approach 2 to extensions, as presented in secticn
2.3.7, it follows easily that

0o
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= (x X x) - {0,1)

where for any OA 6 T(X x X) , t G (O,1)

M= (t (4A))((z) zeXx])

=(z)=t

t XA((x,x)xeX) if t = 1
xex

= 2 ye c PA((xy)x,yeX) if = 0[xfye x~y
x*y

Note the special case 4A = xy) xB for some fixed y E X

B e 5(X) , yields

A(xx) B(Y )  
if x = y

0 ,if x y

whence

'P B(y) for = 1

=({X[ 0 for = 0

an interesting check that membership should be a special case of
equality.

More generally, note the case 4A = OC x B , for C,B e 5(X)l

does not really simplify, except that it extends Manes' equality map
specialized to Zadeh's min - max system.

Alternatively, if approach I to extensions (section 2.3.7) is
formally applied to = , then for any A e T(X x X)

=AO -1

yielding a similar result.
On the other hand, if we consider id(X) : X -# X , it follows

immediately that tt(id(X)) = id(T(X))
i.e.,

= 'id(T(X))
id(X)

Note that Manes considers as basic, the asymmetric extension
procedure f : X - T(Y) extended to #(f) T(X) T (Y) Instead,

we have considered the full extension tt(f) T(X) - (Y) from
f : X - Y . However, note: if f : X - e(Y) then

11(f) : T(X) -. (T(Y)) ,

by the usual extension. Let g e T(X) Thus, 0
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(n(f))(g) c T(J(Y)) and hence (tt(f))(g) . T(Y) - H
In particular, for any y e Y , 8y e e(Y) 9 T(Y) Thus,

((-r(f))(g))(a.) Y -- H

where for each y e Y ,

((n(f))(g))(8.)(y) S ((n(f)) (g)) (8y

Hence, in general, (f(f))(g))(6") e T(Y) Thus, for
f : X -# (Y) , we define:

#(f) : T(X) -* T(Y)

where, for any g e T(X) and y e Y

(#(f))(g)(y) ( ((i(f))(g))( y

Thus, # as used here corresponds to Manes' #
Furthermore, note that # is an extension, since, for any

x e X and hence 6 • e(X) S T(X) , y e Yx

(#(f))(8x)(y) = (n(f)(8X))(8 y) = 6f(X)(6y

Define

e(X) : X -+ T(X) , where for any X e X , e(X)(x) 4 8

Then consider Manes' axiom (Mi)
For any a : X - T(Y) , y G Y

(#(a)oe(X))(y)

= ((t(a))oe(X) (x)) (y )xex

= (t(t(a))o8 x ) (1 y))x

1 iff a(x) = 6y
((8a(x)) y ))XEX 0 iff a(x) 6y
a

Next consider Manes' axiom (M2):
For any S e T(X) , x e X

((#)ke(X)))(g))(x)

= ((; (X) ) )(g) (ax )

(("8y ))y x(g))(8 x )

g(x)

Hence, (#)(e(X))(g) = g , i.e.,
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#(elX)) = id T (x)

Finally, it should be remarked that, in general, we cannot
derive Manes' axiom M3 for # Indeed, for the truth function-
al system ( nt' &' Oor) :

For any a : X T (Y) , P Y T l(Z) , for all f e T(X)

z Q Z,

((#(p)o#(a)) (f)) (z)

- or (f(x))[xEa-1 (8 y)]
xe - (8zl

On the other hand, it can be shown

((#(#(P)oa)) (f)) (z)

= or(f(x))

x E a- ((#(p))(8 ))z

where

(8z) = (g I g e T(Y) & for all z, e Z , z' # z ,

(g I P (8z,)) = 0 & or (g(y)) = 1)
(yEp (8z))

2e , z (8y I y e p-(8z) )

Hence using the monotonic property of t-conorms:
If C S D , then or(h(x)) > Por(h(x)) , it follows that for all

xEC XeD

f e T(X) , Z e Z ,

((#(A)o#(a))(f))(z) a ((#(#(A)oa))(f))(z),

with strict inequality holding in general unless
-1

(#(,)) (8 z) = e ,z
zz

Furthermore, as mentioned previously, a necessary and suffi-
cient condition for Manes axiom (M3) to hold for the interpretation
of # , given in section B and below, is that the truth functional
system ( not' P&' or)  be such that & is right distributive

over r '

Again, conversely, let (V,e,#) be a given Manes theory. Then
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define operator i by, for any sets X,Y and f : X # Y , first
noting

e (Y) of :X e e(1 ) r. T(Y) ,

and hence

1( f) : X) ,(

where

11(f) #(e(Y)of)

It follows readily that all of the axioms we require for t
(and T and e) to satisfy for a general logical system indeed
hold!

Thus, Manes' theory may be considered, in so far as the lifting
operator # is concerned (in conjunction with T and e), a some-
what more restricted logical system. Hence, we cannot expect, in
general, certain of his results to be applicable to general logical
systems. In particular, it can be shown that Manes' concept of in-
dependence of distributions and homomorphisms do not apply here, in
general. However, consider the following example:

As an illustration of the previous point, consider Manes'
system as applied to Zadeh's min-max system and its natural general-
izations:

For any f : X -# T(Y) define #(f) : T(X) -* T(Y) by, for all
g e T(X) and all y e y ,

((#(f))(g))(y) - sup (min (g(x), f(x)(y)))
xGX

More generally, for any truth functional system
( not' &' or) consider

((#(f))(g))(y) n oor('(g(x), f(x)(y)))

xe X

Now, # is a legitimate lifting operator in Manes' sense,
except that axioms Mi, M3 are violated, unless, as stated before
(P. is right distribution over or - which is the case for Zadeh's

min-tax system. (Again, see subsection B.)
Then define ft by, for any f : X - Y

11(f) = #(e(Y)of) ; n(f) : T(X) - V(Y)

Thus, for any g e V7X) and y e Y

(t(f))(g))(y) = ((#(e(Y)of))(g))(y)
= (Por{ (~ (e(Y)of)(x)(y)))

xE X

= Por( &(g(x), af(x)(y)))

xG X
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- (g(x)) .or-io

xef (y)

Thus indeed, ft as defined above coincides with i as pre-
viously defined for truth functional systems! Hence the above
alternative definition for if for truth functional systems is
justifiable.

Analogous to Manes' development of the concept of independence,
first define the following natural extensions of any

f : X x Y -# 5(Z) by use of # or some equivalent.

Define variables by

E 4 X, .. e Y, ... e Z, .. E T(X), -. e r(Y)

Then with obvious notation, for any x e X ,
f(x,-. ) : Y -+ (Z) , and hence #..f(x,.. ) : 5(Y) -* T(Z) , and hence

#..f .,.. : (z) T ( Y ) ,

equivalently

d. . .. . .. - ) (Y)

where for any g e 5(Y)

X -.(Z)

Thus,

#(r (f)) = (#(((#''f( ', ))(')) (. ))) : (X) - T(Z)9 (Y)

yielding equivalently

#(r1 (f)) : (X) x 5(Y) - !(Z)

Similarly by reversing first y for x

#(r 2 (f)) : T(X) x 5(Y) - 5(Z)

In particular, letting f = e(X x Y) X x Y -+ 5(XxY) , if, as
before

#(r(x X Y)) d #(r (e(X Y))) = #(r2(e(X x Y)))

for all sets X and

(r (Xx Y)) T (X) x 5(Y) - s (X < Y)

is the independence mapping. 0
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It can be verified that for # as defined previously for truth
functional system ( not' c&' 'or )  the independence mapping exists

and is given by, for all f e T(X) , g Q T(Y) and all x e X
y e Y

((#(,r( x Y)))(f,g))(x,y) = (f(x),g(y))

= (f x g)(x,y)

Also, one can define for any

a X x X 2 + T(Z) ,

#(a) : (X1  x X 2 ) - T(Z)

as usual, and assuming

r(X 1 X X 2) : (X1) x T(X 2) - r(X1 X X 2 )

exist,

a (#(a))or(X 1 x X 2 ) Ti x1 ) x T(X 2 ) -T Z),

and it follows that #(a) and a extend a

a 1 X2 ) = a =#(a)o(X I x X2 )

A natural question: What is the relation between a , #(c)
and #(r(a)) = #(r 1 (a)) = #(r 2 (a)) , when the latter exists? In

Manes' theory, it follows by uniqueness of 2-homomorphic extensions
and the construction of r(a) (see his theorem 5.7 [169]), that

= r(a) However, due to the failure of axiom (M3) to hold in

general, each a need not be a 2-homomorphism in Manes' sense, the
multiple factor generalization of a function arising as an extension
through # ; although when r(a) is well defined, the latter clear-
ly is such an extension. Thus also, Manes' characterization (again
see Theorem 5.7 [169]) of universally commutative Y-ary operations
being equivaler.: to unique multi-homomorphism extensions fail here.

Again, two important special cases should be mentioned where
all three Manes axioms hold and hence where all of Manes' results on
n-homomorphism extensions and commutative systems, among others,
hold are:

(1) Zadeh's fuzzy set system (I - (.),min,max) where for any X

S(X [ = 0,1]X, U(X) = X

e(X) : X -4 T(X) , where for all x,y e X , e(X)(x)(y) = ,x,y
and for f : X - T(Y) , for all g E T(X) , y e Y

I
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((#(f))(g))(y) = sup min ((f(x))(y), g(x))
xGX

(2) Discrete probability theory: the same as the fuzzy set system
(1-(.), prod, bndsum) where

r 0, if X is not discrete,

TX) - class of all prob. fucntions over X
if X Is discrete

e(X) : X - T(X) , where for all x,y e X

(e(X)(x))(y) = 8

x,y

and for f : X -+ T(Y) , for all g e T(X) , y e Y

((#(f))(g))y) = Z (f(x))(y).g(x) = E (f(.)(.. ))

Note that both examples above are special cases of the system
((not' P&' or)  with # defined as before, where in (1)

Pa = min, or = max and in (2) 0& = prod, 4or = bndsum Note

also that for both systems - as a check with the characterization of
such Manes' truth functional systems - have 0. right distributive,

over @or

So far, we have considered the extension operations IIT
lifting functions f ; X -# Y to 1(f) : T(X) -* T(Y) and # lifting
functions a : X -4 T(Y) to #(a) : T(X) -4 r(Y) and the imbedding

operation e : X -4 e(X) ! T(X)
The question then arises as co the converses of these oper-

ations.
For example, consider the converse of the imbedding operation

e Can we obtain a natural "subjection" (in order to avoid con-
fusion with "projection") S, where for all X , and given
U(X) 9 1(X) , S(X) : T(X) -. U(X) is surjective. Watanabe's example

[267] furnishes such av mapping, when U(X) = I(X) , T(X) = [0,1]X

and under S(X) , any f e T(X) Is pushed to an image representing
the membership function of an ordinary set.

In turn, any mapping such as h : 7 (X) - T(Y) may be reduced
in two easy stages, using again the notation e(X)(x) = 8 , for allx
x e X,

(i) s(h) : X - T(Y)

where for any x E X , s(h)(x) 9 h(6x)

(ii) t(h) X U(Y)
where

t(h) = s(y)os(h)
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Note, of course, the compatibility of step (i) when
h = #(f) , f X - r(Y) , i.e.,

s(#(f)) = f

In summary, a certain arbitrariness marks any logical system.Even Manes' very structured system with many useful properties -such as the uniqueness of homomorphic extensions (see his Theorem
5.7 (169]) - still depends on the choice of lifting operator (in hiscase #) and T operation. (The imbedding operation is usually
naturally determined.)

As Klement mentions in his paper on triangular norms [140),empirical investigations (such as those by Zimmermann, et al. [250),[291) are also needed for better semantic modeling.

Summary of extensions

All the results below may be extended in the obvious way to anarbitrary number of finite factors, by replacing r(X1 x X2) by
T(X X...xX n )

I. f : X 1 X X2 - y, given

We always have

e(X1 x X 2) X 1 x X-2 -*(X 1 x X 2 ) r (XI x X2 )

Assuming r exists,

r(XI xX 2) : (XI) x (X2 ) - T(X 1 x X 2 )

Thus,

e(Y)of : X x X2  (y)

(i) If # is first available, define it by

fl(f) = #(e(Y)of) = T(f) : 5(X1  X X2 ) - 9(Y)

In addition,

7 #(f)or(x 1 xX 2 ) :(X1) x T(X) T(Y)

(ii) If n is first available, then directly
11(f) : T(X × X 2 ) (Y)

and again in turn

I f(f)or(X 1 X X 2 T(X 1 ) x T(X 2 ) - T (Y)
1) 2
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II. f : X x X. (Y) , given

(i) If # is first available, then directly

#(f) : T(X X X 2 ) -4 T(Y)

and hence assuming r exists

If #(f)or(X x X 2) : -(XI) x i(X2 (Y)

(ii) If 11 is first available, then

f(f) : '(X 1  x X 2 ) - T(T(Y))

and in turn, letting E Y(X1 xX 2 ) , E Y

#(f) ((11(f)) ( ))(e(Y) . )

: (X X X 2 ) T (Y)

and hence

d #(f)or(X 1 x X2 ) (XI) x T(X 2 ) T(y)

In particular, all of these results could be applied to the
clessical Boolean polynomials - or truth table function operators,
given by the classes

Bool d (f I f : (0,1)n _ (0,1)) ; n = 1,2 ....n

Lastly, consider Manes' concept of "distributions as opera-
tions" (see [169], Theorem 3.3).

(1) If # is first available, Manes shows for any Y e SET , the
class of all commutative Y-ary T-operations satisfies:

C {y Ty : SET - 9(Ar(SET)) , where for all X e SET

T y (X) :(X) T r(X) and for all Z e SET and all

: X - T(Z)

#(A)OTy(X) = 7y(Z)o(#(A})Y

where (#(A))Y : T(X) Y 9(Z)Y ,) where for all
a : Y - g(X) , and y Y,

(#(A)) Y(a)(y) d (#(A)oa)(y))

= (f ) f : SET - 9(Ar(SET)) , where f e 5(Y) and for all
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yX e SET , ?(X) : T(X) , T(X) where for all
a Y - T(X) ,

(?(X))(a) (#(a))(f)

with the bijective relation,

f -. , all f e T(Y)

and where for any Ty I

T y = ((T y(Y)) (e(Y)))~}.

(2) If thL less restrictive it is first available, analogous to
Manes' proof, we can show

Cyd
= {gy Y 7y : SET - 9(Ar(SET)) , where for all X e SET

T y(X) XY - 7(X) and for all Z e SET and all

: X - Z , l(p)Oy(X) = Ty(Z)op Y , where

/Y : XY  .ZY , where for all a : Y -X , and all
y I Y (pY(a))(y) - (poa)(y) E Z)

- (f SET -P (Ar(SET)) , where for all X e SET

f(X) : XY  T (X) where for all a : Y - X

(f(X))(a) (rt(a))(f) , with the bijective relation

f .-. f , all f E 'Y Y) , and where for any 'y ,

y = ((Ty(Y))(idY)) I

Note also,

(?(Y))(idx) = f

Thus the interesting characterization by Manes for all commu-
tative Y-ary operations does not in general extend to the less
restrictive " system. However, by specializing Y to (1,...,n) ,
say, the se..ond result shows for cartesian n-products there is a
bijective relation between commutative n-ary functions

Sy(X) : X n . T(X) , X arbitrary, and T for all f Pe 7(1,. n)

where for any x e Xn considered as a function x : (1,...,n) X
where x(J) = xj ,j = 1,..., n x = (x.....Xn)

?(X)(x) = (p(x))(f)
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Thus, because of the excessive restriction of axiom (M3), many
(but not all) of Manes'elegant results do not hold for the TT
system but of course will hold when # is replaced by if (which is
always compatible, as shown previously).

7.3 Watanabe's system.

Consider now in some detail Watanabe's fuzzy set theory which
also has a strong probabilistic connection [268]:

Let X be an fixed nonvacuous space of points or objects and
• (X) (corresponding to I(X)) a space of attributes or predicates

or fuzzy sets, etc. Let c : X x I I(X) - [0,1] be fixed such that

for any x e X and A e 1 (X) , @(x,A) = PA(x) e [0,1] Identify

x = y , iff A(X) = (A(y) for all A e I and dually A = B iff

qA(x) = PB(x) for all x e X Suppose also 0 , e I 1 (X) with

the evaluations: 0 = 0 1= I (For convenience, let X 0 .)

Let p : X x ! 1 (X) -. %(X) be fixed and define composition o

(X) × 91(X) - 5 1 (X) by, for any A,B e I(X) , and x e X

4 (x d
-AoB(X) = A(P(xB)). pB(x)

o is not associative nor symmetric in general.
Let the simple predicate class T(X) be defined by

Y(X) d (A I A e 1 (X) & Ao A = A)

(A I For all x e supp(A) {x I A(x) > 0)

A(P(x,B)) = 1 , i.e., p(x,B) e A).

Thus, O,X e Y(X)

(i) If A,B E Y(X) and AoP = BoA , then

AoB = BoA e :(X)

(ii) If A,B e :7(X) with AoB = BoA = A , we write A - B , an
implication or deduction sequent between A and B , noting

PB - OA pointwise over X , if A " B . Also,

A A ; A B , B H C implies A " C

A = B iff (A " B & B " A) ;

0 " A H X , for all A,B,C e Y(X)

(iii) Thus H induces a partial order over I(X) , which in turn

yields least upper bound and greatest lower bound operators

u,n : :'(X) x !(X) - :(X)

E.g., A,B " A U B and if A,B " C then A U B " C , which expli-
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citly is the same as, for any A,B G IE(X,

A U B = C( ... oC(A)oC(B)oC(A)oC(B)) e T(X)

(unambiguously well-defined)

A n B = (...oAoBoAoB) e Y(X) (unambiguous well-defined)

where complemental operator C : -4 1 is also assumed well-

defined, where %CA(x) 9 1 - A(X) ; x S X

If AoB = BoA then it can be shown

A n B = B n A = AoB = BoA .

(iv) It also follows that (y(X), n, U, C) is a complete comple-
mented lattice which is also symmetric, associative, idempotent and
DeMorgan, but in general, not distributive. Also, C is involutive
with the Law of Excluded Middle holding:

A n CB = 0 , A U CA = X , and AoC(A) = C(A)oA = 0

the Law of Self-Co-.tradiction:

A i CA iff A = 0 .

If AoB = BoA then AoC(B) = C(B)oA and C(A)o C(B) = C(B)o
C(A) , and

BoA + BoC(A) =B (pointwise)

A n C(B) = 0 & AoB = BoA implies A " B

A " B implies A n C(B) = 0 ,

A " B iff C(B)" C(A) (Modus Tollens)

(v) Iff for all A,B e Y(X) , AoB = BoA , :(X) is also distribu-
tive; in which case, for any x E X , W()(x) : (X) -# [0,1] is a

finitely additive probability measure over Y Hence in the lat-
ter case, (P(.)(x))x x  is a family of probability measures.

(vi) If for all A,F e ?(X) , AQB = BoA and T(X) is finite in
cardinality, then in addition to the results of (v) , there exist
A1 ... An E Y(X) for some n z 1 , called atoms, such that w.r.t.

n and U , they form a disjoint partitioning of X and such that
for any A e I(X) , if A " Aj , then either A = 0 or A = Ai ;

j = 1,...,n This implies that any A E Y(X) can be written
uniquely

A = U A.,

Aj i A']

which in turn implies for any x e X , we have a probability func-

I
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tion 
istio(.)(x) : {A1 .... An} - [0,1]

with
n
Z A.(X) = Px(x) = 1

and for any A e TM

4(x) = Z A (x) ; for all x e X

Suppose now X 2 {al.....an) , such that

A i(aj) = 6 ij ; all i,j ; 1 i,j : n (Kronecker delta)

Then for any such a. e X :nd A E I ,

A(aj) = Z Ak(a.) = I iff A A
PkAn] k 0 iff otherwise

jAie AJ

and hence

n

A(X' = ( A(aj)'IA .x) all x e X
j=1 J

Watanabe realized the above scheme in a geometric setting.
However, his important example appears somewhat ambiguous in regard
to the interpretation of the composition operation and whether Y(X)
in the example should be distributive or not. We present a simple
unified approach here, interpreting composition as ordinary matrix
multiplication:

Let X correspond to a subclass of all products G of posi-
tive semidefinite matrices G i , where G is normalized with

respect to the trace operation, i.e., G = (1/tr(G1**Gn)).G .G2 *G n,

n 2 1 , whence tr(G) = 1. (Thus any (1/trG 1 )Gj is a quantum

mechanics object.)

Let I(X) correspond to some subclass of all A or In - A

where A = AI..A m  and matrices A are positive semidefinite with

maxeig (A) 1 . Let composition o be ordinary matrix multipli-

cation so that Y(X) is the class of all idempotent (or projection)
matrices intersected with II(X) with typical element

m T n
C I PiP , for some P, ..... m E R orthonormal, m s n It

j= 1
then follows by the fundamental commutativity theorem, for any
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m T m
A= z plp, (X) , letting

j=1 J=1 J J (

F d (P!' 'P ') ; P ''  p . p" )
m

AB is symmetric

iff AB E I(X)
iff AB = BA
iff P. U P" g (pl ... } cr-h'normai in Rn

in which case,

. . . . 2 P j ~ j e x

i sjn p

Define for any G e X, A E V (X) , by

A (G) 21 tr(A.G) : 1

Note also that p here becomes

p(G,B) = (1/tr(BG)-B.G

for all G e X p B E IMX)

Then for any AB e I(XI , A B becomes the relatio,
B 9 A , i.e., w.l.o.g.

A= Z P B = z P PT
je/ I j jEA 2 j2 1J1 JE2

Also, A n B and A U B have interpretations in terms ofmatrix products. In particular, if AB = BA then letting

A= p p T , B = P P T for some A, A c { 1...,n)jA 1'JEA I1  j-A 2  12

A n B =AB = BA = ZX Pp T

JEAInA 2

and

A U B = z pj T

JEAU4 2

in which case for all G G X

(PA (G) = Z P T. GPJ B(G) Z P .jTGP.JeA1  JA 2 2

I
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AnB(G) = Z P TGP ; AUB(G) = Z P TGP

jeA 1fA 2  JEA IH
1 2 . 2

where it can be shown that the same bounds, as obtained for all
copulas and their Demorgan t-conorm transformshold here.

In addition, define

CA In -A.

Note that if A Z P P T , A 5 (1...,n)

then

CA = In - A = P Pj T e I(X)

je{1,.....n} 4A

Also, for any A e II(X) , G e X

(A(G) + ) = tr(AG - (In - A)G) tr(G) = 1

etc.
Thus all desired results in the general case may be realized in

this example, which, in general, yields (Y(X), n, U, C) as a non-
distributive system (with all other properties for the general case
being valid). Thus the system will become distributive (by (v))
iff for all A,B e ?(X) , AB = BA , i.e., there exists a fixed
orthonormal matrix P = (PI ..... Pn such that all A e T(X) may be

written as A = Z P.P.T for some A T (1,..., n) , etc.
J J AjEAA

In addition, Watanabe defines an extended information theory,
where for any G = G(P,W) e X ,

n
Ent(G) = -tr(G-(log G)) = Ent(W) = Z - w. log w.

j=1

Watanabe then extends the following basic theroem in a natural way
to the above example: The entropy of a joint probability function
which has independent marginals is the sum of the entropies of both
and exceeds the entropy of any other joint probability function with
the same specified marginals.

Finally, Watanabe proposes that in the pattern recognition or
classification problem, one may re-interpret the membership function
within the same basic geometric setting as

dP A h21A- X1 2 /1XI2CA(X) =IA x2/hIxhI 2

where A = z P piT E I(X) as before; A is interpreted as the
Je1

0I
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class or pattern against which observation x= e X r Rn  is
[nJl

to be tested for membership. In practice, Watanabe concludes,

rnk(A) will be of a relatively low dimension compared to both n
and sample sizes used to empirically establish a typical candidate
A.

7.4 Gunos' uncertainty logic.

We discuss here a simplified but more general variation of
Gaines' uncertainty logic (66], (68] which simultaneously extends
ordinary probability logic and Zadeh's fuzzy sets.

Let X be any nonvacuous set of predicates and "&" , " 'u
two arbitrary binary operations defined on X which are symmetric
and associative and "not" a unary operator on X Let 9(X) be
the class of all finite well-formed strings from X under these
operations with distinguished elements T and F e 9(X) such that
for all p e 9(X) ,

(T & p) = p = (F or p)

(T or p) = T ; (F & p)= F

(Note the similarity to the usual meaninig of 9(X) the power
class on X .)

For any sequence plP 2,... E 9(X)

p&P2 & . . . e 91(X) ; p, or P 2  or ... e 9(X)

Let 11.l1 : 9(X) - [0,1] be a truth mapping such that

(1) II(T)1 = 1 , it (F) I = 0

For any p,q e T(X)

(2) II (p & q)ll 1 min ( lpli,tlql)))

(3) 11(p or q)lI 2 max (1p11,lIqII)

(4) 11.11 is continuous from above and below, i.e., for any
sequence PI' P2'' " 9(x) ,

11(p1  & P2 ... )I = lm II(pi & P 2  &...& Pn )

n-4

11(pI or P 2  or... )1 = lim 11(p, or P 2  or'' 'or Pn)l
n m

Call the system (T(X), &, or) an uncertainty logic.
Now suppose in addition to (9(X), &, or) being an uncertainty

logic,

(PI) "&" and "or" satisfy in addition the basic relations of
mutual distributivity and

(P1I) ,.11 is a valuation mapping:
For all p,q e T((X) ,

I (p or q)I1 = 1Ipl + lql1 - i (p & q)iip
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and tho negation law holds.

(PIll) I =i1(p or not(p)I lil + II (not p)ll

From this, we can show for any p, q e 9,(X): the Law of
Excluded Middl~e holds:

11(p& not p)li = 0 , since I =I1(p or not p)[1 = lipl + ii (not p)lI

- 11(p & not p)II = 1 11i(p & not p)Ill

l1q11 = '((p & not p)or q)il 11I(p or q)&(not p or q)II

= "((p or not p)& q)II 11I(p & q)or(not p & q))Il

= 11(p & q)lI + II (not p & q)II

Also,

11 (p or q) 11 = 11 p'1  + (11iqil-11 (p & q)I 11 11 pll + 11 (not p & q) It

noting 11(p &(not p & q)l B 0.

If ~I(p & q)l = I1(p or q)Ii , then

11 (p) 11 = 11 (p & q)l 11 I(p or q)I 11=

Also, idempotency holds

llpll = 11(p &(p or not p))II

= i;;jp & p) or (p & not p))11 = 11(p & p)II

Also, DeMorgan's Laws hold

II (not p or not q)ll =I 1(not p)l + Ii (not q)lI - II (not p & not q)ll

= II (not p)II = II (not p & not q)II + lnot ql

= 11 (not p & q) 11 + 11 not: qil
= (V qll - 11i(p & q) 11 + inot qil

1 - 11 (p & q)I11
=1(not(p & q))II

II (not p & not q)II lnot pil + lnot qil - II (not p or not -)H

111 ipl + 1 - 11 - 11 (not (p & q))I
(1- (Ipl + 1q11 - 11 (p & q))I
11 - I(p or q)Il

1 I(not(p or q))11

Also, we have countable additivity:
For any p1 ,p2 ,... e 91(X) with 11(p i & p.i))'1 0

for all i j ,

n C
= lrn Z lip II = Z liP 'i

n-*.o j=1 J=1

This yields a probability logic (see sectin 2.3.9 (A) and
Rescher [2142), where it should be noted that here the mapping
H-il : 'Y(X) -. [0,1] is not, in general, a truth functional in the
sense that there is no function such as &for "&" nor (P r for

",or" nor Pntfor "not", such that for all p,q e 91(X)
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as is true for man-y general loyical systems - including general
fuzzy set systems, where & is a t-norm, or I a t-conorm, not '

a negation, etc. However, do not confuse this with the probability

algebra system 9: = ( not' (a' 6 or ) = (I - (-), prod, bndsum)

relative to discrete spaces, where, in effect, the predicates p E

TX) are replaced by probability functions over X .
Thus, e.g., suppose we let I(X) be B 2 (the real Borel field

on IR2 ) with &=n , or=U , not=C , T= 2 , F=O and 11.I1

be any probability measure over 2 , then we do have a truth

functional system over all pairs of events of the form

d dPx (-o,x]xR , qy = Rx(-o,y]

for any x,y e I , since by Sklar's theorem, corresponding to 11-11
there is a unique copula .c such that for all x,y e R

"1 p x &  q y~ (1 f& lPxll, 11 q yl ,

and hence

11(p or qy)l = lp lx1 + 11gyl - p(1Jpx I,1lq yi)

(although in general, unless (P is Frankian in form - see 2.3.6 -

11(Pxor qy)l1 is not a legitimate t-conorm) and

$$not p 1i = I - 11p 11

Particular examples of choices for 11.11 include = min,

correspinding to the two marginal random variables being maximally
(positively) correlated, (p = prod, which Gaines calls the

"stochastic logic" case, corresponding to statistical independence

of the marginal random variables, and , = maxsum, corresponding to

the marginal random variables being most negatively correlated.
However, in general, for the same probability space as above,

we do not have a truth functional system over all T(X) , since,
e.g., take p to be any fixed subset of 8 2 such that (assuming

one exists) Ilpll = 1/2 . But then take not p = Cp In this case,
"lCpl1 = 1/2 also, but note

11(p & p)I1 = 1/2 > 0 = (p & Cp)l

On the other hand, it follows that any general fuzzy set sys-
tem ! = ( not' &' or ) - not a negation, & a t-norm and or

a t-conorm - over s(X) is also an uncertainty logic where 111
may be extcnded unambiguously to satisfy the continuity conditions,
by using the continuity and nondecreasing properties of and

4or

Gaines presents a scheme for empirically modeling any truth
mapping over an uncertainty logic. (Again, we modify it to fit our
more general approach.):
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Evaluate empirically first X by the usual sample percentage
response of a population answerizg affirmatively to the question "Is
p true or not?" , for each p e X This corresponds formall1 to
the estimation of unknown parameter Ilpil for a zero-one random var-
iable V For a probability logic approach, interpret "&", .or",p
"not" in the usual senses and estimate compound predicate truth
evaluations such as 1i(p & q)1 by those who replied "yes" to both
"p true?" and "q true?" , while for 11(p or q)1 , obtain the per-
centage who reply affirmatively to one or both questions, etc. In

this case, it follows that the estimator 11.11 of 1.-1 can easily
be made to fit the required probability logic structure. Since a
general fuzzy set system is truth functional we need only obtain, in

addition to 1ipll , p E X , as above, empirically P& ' or ' Pnot

by discretizing [0,1] into disjoint cells C. = [2,1] ,j

0, . m-l, picking any two cells Ci  and C , obtaining all

p,q e X for which lip E C and 1iq11 E C. , then computing for
i J

each such pair p,q , (p,q) -l(p,q)i as obtained in the

probability logic approach, and finally compute the pooled sum

E (1(p,q)ll/card(Ci).card(Cj)) where card(Ck) is the number
(Over all P'q

of p e X which have lip1 e Ck , k = iij. Analagous computations

should be carried out for Tor and fnot

Gaines' original version is directed to specifically gener-
alizing Lukasiewicz R I-logic and Rescher's probability logic, so

that he also considers, e.g., the Lukasiewicz implication opera-
tor. Although Lukasiewicz M 1-logic corresponds to

50 = (I - (-), min, max) , its implication operator in effect, in

the form (P(u,v) = P (or - u,v) , actually corresponds to

Por = bndsum, yielding

0 (u,v) = min (1 - u + v,l)

whence equivalence (P. is given by =(u,v) = 1 - Ju-vI , for all

uv e [0,1]

Figure A presents a simplified view of the general processing
flow of acquired information and the relative degrees of generali-
ity of some of the more important logical systems discussed
previously which can treat this information.

7.5 Schefe's agreement probabilities.

Schefe (224] presents both criticism of Zadeh's fuzzy logic and
an attempt at replacing fuzzy set theory by a system closely aligned
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to probability theory.

Schefe desires to connect Zadeh's basic (first order) fuzzy set

theory with probabilities, but rejects the fuzzy set membership
concept. In place of membership-grade mapping, equivalently, he
replaces the values of a membership function in the unit interval

[0,1] by subsets of the unit interval. We simplify and extend his
concepts:

Let X be a fixed space and define set-valued map

f : Y(X) - B[O,l] , the real Borel field over [0,1] , generated,0

e.g., by the class 0 d ([O,x] 1 0 - x S 1} , where f is bijec-
0 0

tive (thus limiting the possible elements of 9(X)), (X) is the

class of all (compound) predicates of interest and 9(X) = Y(X) is

such that f is bijective over 0 (X) relative to 0 , where for
0 0 0

any a e 9 (X) , a is typically of the form (y e A) (A to beC

defined), y E X with f (a) = f ((y - A)) = [0,x a E 5 Thus

[0,1)-Lebesgue probability space ([0,1], B[0,l], Vol1 ) induces

probability space (9(X), fl (% [0,1]), P) ,with
o 0

P d vollof°

called the agreement probability.

In addition, using f0 , in a natural way, we can define oper-

ations \, A, C, : over 91X) For any a1 .... a n

n n
d -1

v a = ( U f (a)
j=l 0 Jl 0

n d -1 n
A a. = f ((1 f (a.)

j= o j=l 

Ca1  f (C fo (a))

d 0l

(aI , 2 f, fo a 1 u f(a 2
)  etc.

Hence f is a lattice isomorphism for v , A , etc. Also

n n
P( v aj) = Voll U f (a.))

j~l J=l 0

P(C a1 ) = Vol 1 (C f (a )) , etc.

In particular, for all a1 .... an  0 M , it follows that

n (X), i folowstha
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n
P( v a ) max Xa.

j=l lSj5n j

n
P( A a.) = min xJ=l 3 : IJ~sn

P(C a1 ) = 1 - x

P(a 1 = a2 ) = min(l, I - xa + Xa 2  etc.

On the other hand, for al, a2 e Y(X) with f (a) and

f0 (a2) independent events w.r.t. vol,

P(a I  /k a 2 ) = P(al).P(a2)

P(a I v a 2 ) = P(aI) + P(a 2 ) - P(aI).P(a 2)

In turn, define

Ao(X) (A A (a X a 4E (X) , y e X)

A(X) (AI A (ay X a ye(X) yeX}

Any A E A (X) is called an elementary agreement probabilistic

set, wnile A E A(X) in general is a compound agreement probabilis-
tic set with membership-grade mapping rA X - (P(a y))yeX with the

following operations defined over A (X) For any

A = (ay)y X I B = (by)yx , define

A U B d (a v by yyeX

whence for any y e X

rAUB(y) = (P(ay v b y))yEX

and similarly for A n B , CA , A * B , etc.
Hence it follows immediately that A (X) and 9(X) are bijec-0

tive under, mapping 7(, ) which is also an isomorphism w.r.t. n
and U But note that C and n , e.g.. preserve the Law of
Excluded Middle unlike fuzzy set theory or more generally, for gen-
eralized logical systems.

For any A c A (X",
0

TAnCA 0 (0)yX O
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Similarly, other classical relations no longer true in fuzzy se.

theory remain true for agreement probabilistic sets and their oper-
ations. In addition, Schefe investigates, to some degree, possible
definitions for conditional agreement probabilities.

Schefe is unaware of any of the more direct natural relations
between fuzzy sets and random sets as set membership functions as

well as with the evaluation of random variables over compound events
([90), [116], [86] and Chapters 3 - 6).

Schefe's criticism of Zadeh's fuzzy logic is illuminating:

(i) He points out that the subjective interpretation of a fuzzy
set membership function (e.g., [105) or [71] or Chapter 8)

at some point x E X , is the degree of certainty or precision tht

x has property A interpreted as non-fuzzy by Schefe - indeed
terms of has agreement probabilities and membership-grade mappinjs,
rather than the interpretation that x has A or x is in A 'C
degree CA(X) . Furthermore, he claims that taking 1 - (.) as a

standard negation operation, I - (A x) is to be interpreted as

AA is (l-¢A')-uncert-in" but not as "(x f A) is (I - A(X) -

certain". Hence, according to Schefe, we must obtain additional
evidence concerning x not having property A , even when we have
the certainty level for x having A . In this regard, Schefe
examines Shortliffe's certainty factors approach to combining
evidence [236] (or [120]) and exhibits similarities and differences
(such as inducing the ability to handle conjunctions of independent
events) with his agreement probability model. (See also section
8.3.)

(ii) Difficulties occur in modeling fuzzy set membership
functions, including those due to statistical and cognition uncer-
tAinties. But again, Schefe fails to see that the same problems
arise in the modeling of probability distributions. Suitable
parameterization of the family of membership functions being con-
sidered can be a reasonable approach to this proolem analogous to
classical statistical modeling.

(iii) However, Schefe's criticism that the intersection of fuzzy
sets (under min) produces subnormal (i.e., maximal value of the
membership functions being less than unity) fuzzy sets, which may
not reflect the linguistic situation, is not on firm ground. (See a
similar type argument in 10.2 A (I).) Consider Schefe's example of
"large" A not large" = "moderate size". This should really be
replaced by "not small" A not large" = "moderate size" where
"large" * "not small". Indeed, Schefe himself points out Hersh and
Carramazza's empirical results [109], indicating that "not large" is
less precise than "small". in the second definition of "moderate,"'
the following more compatible result may well abtain:

not large 20 1 not small

value of I 0 it ze x,
| ' moderate "

0 size(x --
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(iv) Problems in modeling hedges (as well as negations) are
indicated by Schefe. Zadeh's square transform ([15], e.g.) or, more
generally, exponential transform on fuzzy set membership functions
to indicate an intensification such as "very ( )" as indicated in
(109] by emperical studies, probably would be better modeled by a
translation operation. (See also section 9 (C).) In a related
vein, as pointed out above, the antonym "not small" * "large" and a
new operation are required 'o captive the lack of precision in "not
small" as compared to the simple negation of "large". (See (199]
for some related topics. See also the comments in, 2.3.8 (B).)

(v) Finally, Schefe points out some inadequacies in fuzzy set
models involving vague inference, including one treating the pre-
mises " x knows y", "y knows z" with fuzzy conclusion "x may know
Z , too". However, if more information in the conclusion were
desired, a more specific binary relation should be used such as

(x,y,z) e X 4 set of al people who work at A and "know" replaced
by "know well". As premises become more descripti-e so do conclus-
ions. Schefe's appeal to simple statistical correlation as a
measure of friendship itself is inadequate, since a multiple attri-
bute appr-ach would probably be more appropriate: " x knows y" can
be measured in terms of frequency of lunches together, visitations
to common work areas, number of items borrowed from each other over
a time period, reference to each other's names, lengths of natural
conversations, etc.

Additional remarks.

Lake [1492 has suggested use of the function (in place of set)
- axiom approach of Von Neumann, which would encompass ordinary set
theory, fuzzy set theory and multiset concepts.

Birkhoff in Chapter 10 of his basic book [17] presents a most
succinct account of attributes, propositional calculus, quantum
mechanics, modal and multivalued logic, and probability theory.
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CHAPTER 8

INFERENCE USING GENERAL LOGICAL SYSTEMS

This chapter is devoted to the development of inference proce-
dures useful in knowledge-based systems.

8.1 Knowledge representation

The problem of ana~yzing and representing states of knowledge
has been basically treated in AI systems as in classical probabi-
listic approaches by establishing models using:

(1) Conditional (possibilistic or probabilistic) distributions
(or dispersions) representing e.g., in medical diagnoses problems,
relationships between patients' symptoms and disease states, and

(2) Conditional distributions representing observed data
errors.

Tribus [252] considers probability assignments to information
available as a numerical encoding of states of knowledge. For the
linguistic information analogue, possibility assignments, such as
proposed by Zadeh [290), may suffice as the numerical evaluation of
states of knowledge. See also Felsen [57').

Due to the concept of a general logical system, as developed in
Chapter 2, both Zadeh's possibilistic and the more classical proba-
bilistic, approach to knowledge representation may be treated in a
general unified manner.

As mentioned at the end of the Preface, this treatise is con-
cerned with developing appropriate models for handling different
types of uncertainty involved in knowledge-based systems, and is not
about the "theory" of knowledge-based systems per se. However, we
will summarize here some of the relevant issues involved in
knowledge-based systems.

In addition to the reference cited in the preface ([12']), the
interested reader should consult Bellman [13'], Davis and Lenat

[44 V], and Rich (216'], where knowledge-based systems are viewed as
part of AI. In addition, the work of Spiegelhalter and Knill-Jones
[246], where comparisons between AI and statistical techniques are
presented, may be applied to the analysis of knowledge-based sys-
tems.

Knowledge-based systems are basically systems which can use
human knowledge (sometimes, expert knowledge) to perform tasks
through some reasoning process. At an "intelligent" level, these
systems should be able to do things which require some form of human
intelligence, e.g., decision-making under uncertainty.

As stated earlier (see section 2.1), natural language is a
priviledged channel of ,-mmunJcations of humans, so it is therefore

reasonable, ior example, Lo consider understanding natural language
as an appropriate (albeit, ideal) goal for machine intelligence.

475
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This requires the modeling of knowledge acquisition, knowledge re-
presentation, and knowledge utilization. (In this text, emphasis is
mostly upon the latter two areas.) Often, part of the modeling is
based upon knowledge gleaned from experts - leading to the design of
"expert" systems. On the other hand, mathematical logic can also be
used in the modeling, especially in the representational aspect.
However, as Rich [216'] points out, it may be more appropriate to
use more flexible logics than simply the classical one, such as
Probability Logic, Fuzzy Logic or some "non-monotone" logic. For
example, in the case of incomplete information, a type of "default"
reasoning is suggested.

At this state-of-the-art, basic objectives in the field of
knowledge-based systems can be handled by declarative methods
(consisting of facts and procedures/rules for manipulating facts) or
by procedural methods (where knowledge is represented as procedures/
rules for using it). Examples of declarative representations of
knowledge are conceptual dependency, frames, semantic networks, and
scripts. Default reasoning and probabilistic reasoning can be con-
sidered as procedural methods. Often, a combination of the two
above methods is used. Knowledge representation structures can be
syntactically oriented - where, e.g., classical predicate calculus
and logic are utilized - or can be more semantically oriented -
where conceptual dependency, frames and semantic networks are em-
ployed, etc. In a related vein, Zadeh's PRUF [283) approach should
be again mentioned.

Analysis of knowledge-based systems also requires the modeling
of perception, judgment, integration of knowledge, and cognitive
processes in general (98'], [25), [38], [157], [274']. Another
related area involved in knowledge modeling is that of the mental
representation of concepts and concept prototypes. See, e.g., Cohen
and Murphy [40'] also Osherson and Smith [198'], where the theory of
fuzzy sets has been considered. Specifically, a concept is regarded
as a definition of a term (in some natural language) or a statement
of the defining conditions for membership in the class designated by
the term . A theory of prototype was suggested as follows: a con-
cept C (in a given natural language), e.g., "bird", "red", "table",
"red table", is not sharply defined, and hence should be considered
as a fuzzy set of some universe of discourse, say, a base space X ,
elements of which are objects related to C . The notion of member-
ship in C is specified by a membership function OC : X - [0,1]

A special member x E X is chosen based upon some criterion deter-

mined by a given metric d on X . This special x0  is called the

concept's prototype. Thus a mental representation of C is a quad-

ruple of the form <X, D, x, ( MR(C) . In order to represent

more complex concepts, in natural language, (e.g., as expressed by
adjective-noun, noun-noun, such as "ocean drive", "night flight",
etc.), the problem of conceptual combination, based on generalized
set theory, has been discussed. As was pointed out in [198'], there
is a need for considering different logical systems other than
(untl, ,&]l, florl) = (1-(.), min, max) . Nevertheless, the negative
conclusions of [198'] concerning the use of fuzzy set theory due to
apparent "fallacies" is basically unfounded. (See section 10.2(A)
for further discussions.)
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8.2 A decision theory based on dispersions.

A generalized decision theory based on semantic evaluations of
possible losses may be developed, extending the classical notions of
probabilistic decision theory and statistical inference.

Let X be a fixed parameter space and D a fixed decision
space and suppose L and A represent, respectively, loss and true
values, jointly relative to X x D Indeed, assume L and A are
both generalized subsets of X x D , where

PL ' A : X x D -+ [0,1]

In turn, expected loss in ordinary decision theory is replaced by
the semantic evaluation for any r e D

E(( ( J-) 1(3x)((x,r) e L n A))11

= or( &( L(Xr), (PA(XX)))

xc X
= or( 6&( (L ly)(r) , (D 1y )( 7), (PB (Y ))) ,

ye Y

assuming the Y-projection may be consistently carried out (see
section 2.3.8 E), where

P (L y)()  4 or(t&(L(xT), (Cly)(x)))

xQX

where it is assumed for all r E D , y E Y , x e X

((Aly)Ir)(x) - (CIy)(x)

and PB : Y - (0,l] is given.
*

Thus, the Bayes decision function (P will satisfy
(DI')

inf E(p(DI- ) = E(P (DJ.))
all

where for all y e Y

(D (y) () y (Krnecker delta),

where r is determined from
y

(P(L y) 7- = inf (Lly)(-r)
(Ljy)(ry) nreD

For example, analagous to ordinary decision theory, if

I
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L(x1r) I if lIx-til : a

I0 if lix-ril > a

then in a limiting sense, as a approaches zero, the Bayes decision
function which yields inf E({(D")) is

(P (D I ' )

(Djy) ( )  rLl(ClY) ,for all r e D

For simple hypoth s testing

L(x,r) = a > 0 , iff x e H 1 r = HO

L(x,r) = b > 0 , iff x e H , r = H I

L(x,T) = 0 , iff x and r are
otherwise.

where

X = H 0 H, D ={HoH1

the Bayes decision function is equivalent to deciding H

iff

%&(a '(°r ( (C))(x))) ;t (b,''°r ( (Cly) (x))) '0

(xeH1 ) (xeH0 )

noting the further simplication of omitting &, a , and b , when

a=b= 1.
Analogues to several concepts in ordinary statistical theory

may be developed here, including maximum likelihood estimators,
likelihood comparisons, invariant estimators, Neyman-Pearson-like
hypotheses tests and confidence sets. However, these will differ in
form - in some cases considerably - due to the lack of the con-
straint of summing to one for the possibility functions involved and
due to the general forms for 0not '& ' or . It should be noted,

if 9not = 1 - () , (P = prod, and or = bndsum , and the possibi-

lity functions representing parameters and data are probability
functions, then all of the above decision theory concepts reduce to
the classical probabilistic counterparts.

The above development in general, is in contrast to other at-
tempts to "fuzzify" ordinary decision theory, by replacing ordinary
sets or operations involved by fuzzy ones. (See Dubois and Pradc
[51], pp. 277-296.)

To illustrate the above remarks, consider the following example
of the construction of a possibilistic confidence set.

Let unknown parameter 6 e X = D = , and suppose observed

data vector y e Y = Rm , where

y = f(e) + u all 0 e X , all v E Y
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with

f : X Y known.

: Y X estimating function being h-invariant,

where

h : Y X known,

i.e.,

0(y) = 0 + h(u) ; all 0 X , X C Y

Let u have possibility function OA not dependent on 8
0

Define, for any possible 0 e X , c > 0 , region Ro X by
0 1,c

R = ( 0 -E X & I Al-ll : c)

I IIII denoting vector norm (while 11.11 denotes truth value).

Then, for all 0 E X

Ii(0 e R l, = I1 Or o(0 C R & y = Y)"

0("),c all y 0(y),c

= 11 Or (y = ?)11 =11 Or (u= ) Il
(y I I (y) - ll :5 c) (B I I 1 1 1 c)

=or (A B(A) (C )

a result not dependent on 0 , assuming the truth functionality of

evaluations relative to (or Thus, B(A) : - [0,1] is mono-

tone increasing, in general.
Hence for any 0 < a < 1 , defining Ca by

c a d 9 (I -a)Ca A

R-),Ca is a (I - a)-level possibility confidence region for 0

analagous to the classical statistical concept. Especially note,
the linear regression reduction when B is m by p of rank p

h(u) = I.u , where A = (BrCov-1 ()B)- B cov- () , o = bndsum,

etc. (See, e.g., C.R. Rao [212].)

I
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8.3 Combination of evidence problem.

Knowiedge representation techniques play an important role in
the design of expert systems; see, e.g., Nau [183] and Davis and
Lenat (44']. At the control level, the problem of combining of
evidences becomes essential in the technique known as problem
reduction, e.g., in MYCIN (see Shortliffe and Buchanan [236]) where
each problem can be decomposed into several simpler sub-problems.

Formally, Bayes' theorem for manipulation of conditional
probabilities (in statistical systems) provides a rigorous proba-
bilistic analysis.

Recall that the probabilistic combining function is derived as
follows (see also Ishizuka, et al., [121]):

Let (n,A,Pr) be a probability space and A,B,D E A such that

Pr(A), Pr(B), Pr(D) and P(D) (where 5 is the set-complement of
D) are all positive. Then we have:

Pr(D I A n B) = +Pr(DIA)Pr(DB) Pr(D)
1 Pr(DIA)Pr(DIB) Pr(D) J

provided Pr(APBID) = Pr(AID)Pr(BID) and

Pr(AnBID) = Pr(AID)Pr(BID)

Indeed,

Pr(DIAlB) -Pr(AnBID)Pr(D)

Pr(AnB)

Pr(AJD)Pr(BID)Pr(D) Pr(DIA)Pr(DIB) Pr(A)Pr(B)
Pr(AnB) Pr(D) Pr(AnB)

But Pr(AnB) = Pr(AnBID)Pr(D) + Pr(AnBID)Pr(D)

= rPr(DIA)Pr(DIB) +  Pr(DIA)Pr(DIB)j. Pr(A)Pr(B)

- LPr(D) + Pr(D) ) r )rB

Thus:

Pr(A)Pr(B) = F Pr(DIA)Pr(DIB) + Pr(DIA)Pr(DIB) 1-1
Pr(AajB) I Pr(D) Pr(D) J

In medicine for example, due to the lack of sufficient data and
the imperfectness of judgmental knowledge, one is led to consider a
more realistic measure of uncertainty known as the certainty factor
(Shortliffe and Buchanan, [236]) which is an approximation of condi-
tional probability. The problem of combining of certainty factors,
or of other uncertainty measures, is important for decision process-
es. Dempster (46), followed by Shafer [228], generalized classical
Bayesian analysis. Dempster in essence worked with multi-valued
mappings (or random sets), while Shafer presented an axiomized
version of the approach in the form of his "belief functions". Both
addressed the problem of combination of evidence based upon
Dempster's earlier work, Dempster [46). The Dempster-Shafer theory
of belief functions, which claims to provide a mechanism for
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handling doubt, ignorance and conflicting evidence, is receiving
increasing attention in the AI literature. (See Spielgelhater and
Knill-Jones [246].)

However, it should be emphasized that Dempster-Shafer theory is
completely analyzable through the use of random sets and the Choquet
capacity theurem (see section 3.2 or Nguyen [187), etc.). For
example, the Dempster-Shafer rule of combination of evidence is in
actuality the superset coverage function of the intersection of
statistically independent random sets (see Goodman's comments [90]
or the remark following Theorem 5, section 4.2).

Let us return to the concept of certainty factors.
Let (2,A,Pr) be a probability space. For an event H E A

considered as a hypothesis, and an event E e A , considered as an
evidence, the 'certainty factor for H in the light of El is
defined, assuming 0 < Pr(H) < 1

Pr(HIE) - Pr(H) , if Pr(HIE) F .(H)

CF(H,E) 1 - Pr(H)
Pr(HIE) - Pr(H) , if Pr(HIE) < Pr(H)

Pr(H)

Remark:

The set function a A - I , where

a(A) d Pr(A) A C A , Pr(A) 1
1 - Pr(A)

is the (prior) odds ratio of the event A The conditional odds
ratio of A given B is

aB(A) - Pr(AIB)

Note also that, when Pr(HIE) 2 Pr(H)

CF(H,E) = aE(H) - a(H)

Heuristically, the same interpretation of CF applies to the
case Pr(HIE) < Pr(H) with appropriate odds ratios.

The set-function a satisfies the following properties:

(i) a(A)'a(CA) = 1 , V A e A ,

(ii) A,B E A A B a(A) S a (B)

(iii) A,B E A , A n B = 0 = a(AUB) a a(A) + a(B)
(superadditive),

(iv) If A n,B E , and A n T (Resp. B n4) , then

n
a(A n ) T a(UAn ) (resp. a(Bn) I a(fAn) (sequential

n n n n n n
ascending and descending continuity).

I



482 Goodman and Nguyen

We can extend a from A to 9(a) by replacing Pr in the
definition of a by its induced outer measure. If f is a topo-
logical space and A is its Borel a-algebra, then it can be veri-
fied that a(or aE) is a Choquet capacity.

Now, from the definition of CF(H,E), the problem of combina-
tion of evidence - namely, given C(H,Ei) , i = 1,2, say, find

CF(H,E 1 and E 2 ) - is centered around the following problem of

calculus of probabilities: given Pr(HIE.) , i = 1,2, find

Pr(HIE 1 n E 2 )

Assuming independency between evidences, i.e.,
Pr(E 1 l E 2 ]H) = Pr(E 1 H)Pr(E 2IH) , an ad hoc combining function was

prcposed in MYCIN [?36] in the following "truth functicnal" form:

CF(H,E 1 n E2) = g[CF(H,EI) , CF(H,E 2 )]

where

1 if x = 1 or y = 1

g(x,y) x + y - xy if x > 0 and y > 0
x + y if x # ± 1 , y * ± 1 and xy S 0

x + y + xy if x < 0 and y < 0

-1 if x = -1 or y = -1

As it was pointed out in Ishizuka, et al. [120], CF(HE 1 In E2 ),

which is obtained by using the above combining function, is only an
approximation since

Pr(HIE 1 n E2) - Pr(H)
g[CF(H'E I) CF(HE2)] 1 - Pr(H)

A consistent combining function, always holding in the case of
independent evidences, was proposed in Ishizuka, et al., [120]. The
combining function turns out to be a function of CF(H,Ei), i = 1,2 ,

and of the prior odds ratio a(H) . See also Ishizuka, et al.,
[121] for the problem of combination of evidence using Dempster and
Shafer's theory.

In summary it has been proposed to combine evidence in the
forms of:

(1) conditional probabilities using the classical Bayes'
theorem,

(2) belief (and related) measures using Dempster-Shafer's rule
of combination evidence,

(3) certainty factors (as approximating to conditional proba-
bilities) using ad hoc procedures.

Typically, in applying Dempster-Shafer theory to problems of
combining evJir1- -r in estimai-!ng unknown parameters, the relevant
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belief measures, doubt measures, plausibility measures, etc., must
be known exactly or up to some class. (See, e.g., Shafer [228].)
However, the results of section 3.2 show that there is, up to dis-
tributional considerations, bijective relations between such
uncertainty measures and corresponding random sets, and as well,
between belief and doubt measures, doubt and plausibility measures,
etc. In practice, it may be too difficult to obtain the necessary
probability measures corresponding to the random sets of interest.
This is often due to combinatorial considerations: for a space X

2 card(X) = Card T(X) probability values are involved for S , any
random subset of X . A reasonable weakening of the above require-
ments is a specification of only the k-coverage functions of the
random sets involved for some suitable finite k . In particular,
k = 1 yields the weakest level of specifying information, k = 2 ,
less weak, etc. See sections 5.2, 5.3 for further details concern-
ing the spectrum of specification of random sets through their
multiple point coverage functions. Also, it has been shown (section
5.2) that the k-point coverage determination of random sets is
essentially equivalent to the specification of a corresponding
multiple memL.ership function, i.e., the semantic evaluation of
the distinguished k-place signature membership predicate symbol
E iX..xi between k variables and k-place attributes of gen-

eralized sets. In particular, the case k = I corresponds to the
simple membership symbol ei (or just E) (See section 2.3.5.)

With the above in mind, we can consider for purposes of sim-
plicity only the case k = 1 and develop an approach to the
combination of evidence through simple dispersions representing the
semantic evaluation of the relevant membership relations between the
unknown parameters of interest and their attributes.

Finally, it should be noted that this approach is a general-
ization of the case involving conditional probabilities, when
Probability Logic is used for the semantic evaluations.

The following approach to the combination of evidence within a
general multi-valued logical set theory conttxt may be modified in a
straightforward way for changes in the assumptions. Here it is
assumed that:

(a) A collection of joint posterior membership functins OCk

is available:

Ck(0kZ k I Yk ) ; k e J

where Ck e I(X x Dk) ; 9k E X represents the common values of

unknown parameter vector 9 E X , k e Dk  represents a nuisance

parameter; and Yk e Yk represents data, all for source k e J

the collection index set of sources. J may be finite or infinite.

(b) A fuzzy set system ( nt, &, or) is chosen for the

logical operators. More generally, a single logical system or a
:o2lcction of logical systems cculd be chosen, but for simplicity,
only the former will be treated. For justification for choosing a
particular fuzzy set system (or systems), see Chapter 9.

Then, assuming no interactions from the overall joint posteriorI
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function, 0
%c (O,zjy) = II(6,z) x ck II

0 kc: J

=&( C k (Ok, Zkly k ) ) ,
keoJ= k (% (6zk))

Px C k~y)
keJ

where

S(0 k)kEJ (z(Zk)keJ ; ' d (yk)keJ

In turn, the nuisance parameters may be eliminated by the
projection

zED o
proj (C) - 0

X
= or (tc (£, y)) ,

where
D x D.

0 keJ K

The unnormalized diagonal set diag e 5(X) is determined by the
constraint

4'diag(91,Y) = (Pprojx(C)(21Y)) , ek = a , k e J ; all 6 e X

Let univ e 9(T(X) ) be a universal set representing all
possible (fuzzy) sets describing 0 Then at diag

Puniv (diag) = yor( diag(91))
OEX

Noting the identification

Pdiag-univ(, diagly) = 'diag(e y)

the desired conditional possibility function (0 diag, X) is

obtained from the relation

Odiag(01,Yf) = p&(P(Oldiagy), Puniv(diag))

In particular, suppose X = IR, J finite, P = prod,

( or = probsum, Do = 0 6
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k I Yk ; k) = ?j(ek - pk(Yk Ck).d(0 k )k

where r' is the J-dimensional multivariate Gaussian p.d.f.,

Jk(yk )  is an estimator of the true value for 0
k ' Ck is a

corresponding covariance matrix of error, and Ak(0k) is the

X-volume of a sufficiently small X-cube (cell) Ck(9k) surrounding

eke X , k e J

It then follows that (approximately, becoming more accurate as
Ak(ek) - 0 , k E J)

@(P diag,y)

= F - '(),U. ~k

where

1iV) -Cf (Ck -Pk(yk)),
ke J

C L r z jCkl -

Note that (A() ,C.) represents the standard BLUE (best linear

unbiased estimator) statistical estimator of e
Consider again the , Is in general where

(Ck (k, zk I Yk ) ; all ak E X, Zk 5 Zk , k e J , with all of the

above definitions holding.
The following theorems are direct consequences of these

definitions (see Goodman [86)):

Theorem I

If 1 (1,2,3 ....

0 = (9 I e E X & lim (, z k  ) = 1)
k-.s- k

for all z D , and if a is an Archimedean t-norm (see section
2.3.6) , theA

(Pdiag(f [Y) = 0 ; all 6 e X

Remark 1.

If (P6 = min, then in general
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diag(eY) > 0 ; all 0 6 X

Recall from section (5.2) the bijective relation between flou
classes (or collections of nested level sets) and membership func-
tions. Thus

r(Co0Y ) d ( Cla '11)ae[0,1 ]

0

corresponds uniquely to C
0

Define also for any t-norm the flou class of conjunctive

information as

M(E, 6'Iy) = r p C [a,1]

Then

Theorem 2

r(C0 1 ) - M(C, alx )

for all , with equality holding iff min

Remark 2

In a sense, Theorem 2 indicates no information loss when

Pe = min is chosen. (See Goodman [86], [82 [91'''] for related

results.)

8.4 Some asymptotic results

Most results involving general logical systems and fuzzy
systems are concerned with fixed finite structures7.

In response to the criticism of Arbib [6] and Manes [170],
[168] concerning the lack of asymptotic results, Dishkant [48] has
made progress in addressing this issue. He shows for general fuzzy

set system 9" (1-(-) , minsum, max) , for any sequence
(Aj)j . = 1,2... of fuzzy subsets of R with sufficiently well-

behaved derivatives for (Aj ' which have only one modal point

yielding value one and having finite interval support,

( ZA.I(x) - p(x))n=1.2. . - 0

uniformly in x , for all x e R , where

d 2p(x) =max (1 - (c/2) (x - a) ,0)
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- exp (-(c/2)(x - a)2
)  ;

for constants c > 0 and a e R which functionally depend on the
"well-behaved" conditions of the derivatives. In addition, Dishkant
discusses estimation of a and c from empirical eviience.

Concerning Manes' last criticism, see section 2.3.7 where two
justifications for the extension principle - in its general form -
are given.

It also can be shown there are general fuzzy set system
analogues of the Law of Large Numbers and related results. Speci-
fically, the following properties may be easily obtained:

(1) Following the extension principle, justified by multivalued
logical considerations, let A1 , A 2 .... be arbitrary fuzzy subsets

of X I Q , where X is a discrete (finite or countable) space.

nThen, defining the function h n: JR J
n

hn(x, .... x) n x. I all x I , ... x nJR

the mean or least squares estimator, etc., without any appeal to
statistical theory. Then for any y 6 JR

hn(Al .... An) (y) = 11(y e hn (Al , .... A n ))I

%or &(A1 (x,). ..... A (Xn))

(xI  ... X) hn
1 (y) n x

For any e > 0 , consider:

(Por 12 h n (All .... 'An) (Y)

(jy-pnl 6)
H Pn

= Or (ly-Pn 6 & y hn(A1 ... , An))I , for all y e X (1)
XEX

where

d1ndln

n -n
Jj

P11 P2. ..... a sequence of constants in R Note that the number
of arguments of Por is at most countable here (while that of &

is finite),

Thus, if, e.g., pl .. .. . n are some measures of central

tendency such as, e.g., means
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PJ~ X - X'A'. (x )  
0

XG XX A x

where for ill x E ,

A.(x) = (1/'j)A.(x)

and

d

xEX j

is assumed finite; j = 1,2.... n

then eq.(i) represents the general fuzzy set extension of the

probability form

Pr( IXn-Pn 1 :e)

where

-n n 1 n....

random variable X. having OA" as its probability function,J j

= 1...n, with X. ..... Xn being statistically independent. As

before, merely specialize

((nt' (0&' or ) = (1-(.), prod, bndsum) (bndsum = sum over proba-

bility functions) to obtain the probability analogues.
Assume now

(i) Y1' < + I

(ii) 1 ' P 2 . . . .. < +

2 d 2 2
(iii) a. X (xP A(x) S a < + j = ,2...

(iv) (P is any t-norm bounded above by prod

(v) Por is any copula.

Then for any a > 0 ,

n, d 4or (hn(A .. An) (y))
lyIKI~t8 n 1.An

ye X
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xi ..... Kn) e h n (y)nX A
I y-PnlZ 1?,yeX

since

nor N bndsum N sum (2)

(xl,..... n)e hn3(y)nX] n

n n n

2
n 00~ n. 82 '

noting that now n is the sample mean of statistically independent

random variables, which by use of Chebyshev's inequality yields the
standard upper bound for Weak Law of Large Number convergence.
(See, e.g., Revesz [216].)

Note that

I0(a) If all ill 12 ' .... < ,

i.e., 'A I , (PA2 .... all represent deficient probability functions,

then

0 = lim J n,a 0(1on/n)'
n n,5

better than exponential rate convergence to zero.

(b) If all i 1 2 = ... = I

i.e., P A I 'PA ... ' all represent ordinary probability functions,

then

1
0 = lim Jn o()

n n

(c) However, if

II1' 2 ' ' ? I ,

then the upper bound on Jn,5 diverges,although for any fixed n
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by choosing 5 > 0 suitably large J may be made small.n,5

(2) The last situation can be improved upon by considering first
the continuous analogue of (1) and within it the class of
Gaussian-like fuzzy set membership functions:

Suppose t-norm (P is arbitrary differentiable in all of its

arguments at 0 and

AI, A 2  .... : - [0,I)

with B G Rn , an open connected domain.
n

Also, for each m Z 1 , define for any Ak(m) > , k =1..,n;

n 2: 1 ,

d m (n)Mm,n  = (J I J = 0, ± 1, ± 2, ..
mn k=1

and

K B n Mm,n n m,n

Suppose the grid

lim max ((m)) = 0

for any m 2 1 Finally, suppose or is any Archimedean copula

(see 2.3.6) which implies there is a decreasing convex h

h : [0,I) I- + ; h() = 0,

such that for all yl....Yn G [0,1]

n
Por(y. . yn) = I - h- (min(h(O), Z h(l - yj)))j=1

assuming also h(l - u) is differentable in u at 0
Then for any n 2 I , defining

(n) d n
x =(Nx1 .  4

Por (&(AI (xi)dx2 . ... A (xn)dxn))
x(n) n

n

= lim Aor ( A (xI ).Ai (i)..... A (xn)' n (m)))
o x (n)EK n

m,n

= I - h- (min(h(0), ch(I-y) N NII Cy y=o'Nn n

6
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by suitable multiplying and dividing by arguments, use of the defin-
ition of integration, and eq.(2) , where

N n [1nF &(Yi l ... Yn)l f A (xl)-'fA (Xn)dX 1 -dX n
n - Y*1 ''n I = -...Yn =o x(n), B1 n

If now for j 1,2 ....

d-)-Y f OA.(X)dx 5 7 0 < +
(i) = = '

XER 3

defining probability density function OA by

OA'(X) OCA. (x) ; all x e R
7j j

(ii) f X0 A(X)dx < +,

XE R

(iii) 2d 2(x_),(x)dx < 2< +j (XP O xd o 0

(iv) 0. is any t-norm bounded above by prod

(v) Oor is any Archimedean copula ,

(vi) B n =(x 1I ... x n )  I I 8) , for all n k I

then for any n k 1 and any a > 0 , by a slight modification of
the last result,

d

n,8 = or (00 4 A I(xi)dXl ..... A (Xn)dXn))

x(n)cB
n

-n Pr(JX n - in I z )
on n

where now random variables X 1 ... X n  correspond to p.d.f.'s

nnf~i ...f~n respectively,

0 2
n 0

0 n8 2

Again, the same convergence conditions hold analogous to the

discrete case. However, in this case, if these conditions can be

improved upon by suitably restricting the shapes of

(PA IA 2 .... then convergence can take place. That is, geo-

metric convergence in n can be assured for Pr(In - n I k 8)

by the Baum-Katz-Read Theorem [13], which gives necessary and

p||I• |
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sufficient conditions for such convergence: essentially, the moment
R nt

generating function of Xn I E(e ) as a function of t for any
> 0 , and t sufficiently small satisfies

£ t
E(e n- ) S consta.e tI8

This condition is satisfied by the Gaussian-like forms (or by suit-
ably bounded mixtures of them)

A.(x) = c eJ ; all x e R,
:3

where a. > 0 is arbitrary fixed and where I >- c. ) 0 is arbitrary

fixed, whence

A (x) = (1/7j) -A (x) ; all x e R

is a p.d.f. for Gauss(p , -  ) where

dnj:=7." = . - . .,

(These forms are closely related to those often chosen for "fuzzy
numbers". See [513.)

Hence, for these substitutions, by direct computations, for any

integer n 2 1 , and any 6 > 0 , since X is distributed
n

-2 d nGauss(Pn' an 2 JZ oZ )
n =1

S -max c j afl . I n f I x j 2

is j cn 2 e dv n)

n

-52 /2-

c n 2 On
1-:- Ja5 F. . . .]
m a l n j 6 J F2 + 4/ ,-

nn

b 1 standard inequalicies (see, e.g., [1], p. 296, # 7.1.13).
Thus,

Cj/ -q 0 < + c implies q,6 S a , (b6)n /- ,O

where
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D ~ ~ 5 dFI (oi

a5 =4j-- .e

> o 0Hence, if 6is chosen such that

then

0 = lim J n,8 = o(ban/i-n)
n-#*

(See also [52) for some related results involving asymptotic
properties of sums of fuzzy numbers.)

For other asymptotic results involving or and 4& opera-

tion-, see Chapter 9 (E).

For a recent paper on the Strong Law of Large Numbers for
fuzzy random variables, following up on Kwakernaak's concept of
fuzzy random variables [148], see Miyakoshi and Shimbo [179"].

(3) Walley and Fine [259] establish parallels to the classical
laws of large numbers linking sampling frequencies of events
through use of limsup and liminf operations with upper and
lower probability measures, as well as generalizing probabilistic
concepts of independence and estimability.

Noting that both upper and lower probability measures corres-
pond uniquely to random sets (see Chapters 3 and 4), an empirical
link as described above is not surprising. Indeed, if a random
set S E %(X) has a known distribution, the incidence function

(2) given in section 4.2 where for all sets C e 9(X) of

interest,

P (2 )(C) 4 PI(S n C # 0),
(S)

is an upper probability (or plausibility) measure. Similarly, it
S is actually unknown but is estimated by any standard procedure

by, say, S , then again p - (2) will be an upper probability
(S)

measure, which if S is close to S in any reasonable sense, so
will p be close to p (2)

(S)(2) (S)

A similar situation holds for the other extreme: fuzzy or
generalized sets, but in this case, the random set S involved in
generating a given membership function is not uniquely determined
- only up to one point coverages. Or alternatively, using the
random variable representation of a fuzzy cet membership func-
tion, one can choose a space X and a fixed .ollection A of, in
general, overlapping compound events from a a-algebra on X and a
given sequence of Independent identically distributed random vari-
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ables V1,V2 .... and compute by any standard zero-one averaging
nd

procedure the asymptotic probabilities 1/n Z Pr(Vj E C) gn(C)
j=n

for each C e A to obtain gn as an estimator of true membership

function g over A where each C is formally now a "point" in
A.

Of course, another alternative to the modeling of membership
functions is to use formally a zero-one random process which may
be repeatedly sampled, to represent a subjective determination.
(See also section 5.1.)

(4) Goodman [79] has obtained asymptotic forms for generalized
weighted sums representing averaged fuzzy data and corresponding
posterior fuzzy parameter sets. First recall the following con-
cepts (see also section 8.2):

Definitions

Let X1  and X2  be two given base spaces and (& any

t-norm. For any A e 7(X x X2 ) , define a projection

p1 (A) ; (X1 ) Ipby P(A) (xI) = @or ( A(xl'X 2 )) ; x1 X1  and

X 2 Ex 2

similarly define P 2 (A) e 5(x 2 ) . Then it follows from basic

properties of t-norms that all x. e X. , j = 1,2, there are

(p1 (A) I x2 ) e (X1 ) and (p2 (A) I x1 ) e 9(X 2 ) , called condi-

tional fuzzy sets, such that for all x1, x2

(PA(Xlx 2) = '&( (p1 (A), X 2 )(xI) , @p2 (A)(X2)) (1)

p &( (2 (A)JX I) (x2 , (Pl1(A) (x ))

which are uniquely determined over supp (A A ((xix 2)1 A (XX )

> 01 , provided & is strictly increasing in each argument.

Note that if A e 9(XI x X2 ) then Pi(A) is the ordinary
projection of d (p(A)Ix) , A into x. and (P2(A)Ixl) , say, is

the section of A in x , given x1  (See also section 2.3.8

for background.)
It then follows immediately that a fuzzy set form of Bayes'

theorem is obtainable.

Theorem 0 (Fuzzy Bayes')

Let A e 9(XI x X2) with (P a strictly increasing t-norm.
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Then over supp(A) , (p1 (A)1 x 2 ) is a function of (p2 (A)j.) and

Pp1 (A) , determined implicity from the following equations:

&( p(P1 (A)Ix 2 )(x1), PP2 (A)(x2)) (2)

= 2(A)Ix I (x2 ) Pi (A) (x))

where

PP2 (A)(X2) = or (f&(f(P2(A)x 1x ) (X2 ), 
4 Pl1 (A)(X1))) (3)

l1

Remark 1.

An obvious analogy holds here with respect to standard Bayes-
ian modeling. We can interpret (P2 (A)I.) to be the conditional

fuzzy data set, P1 (A) to be the prior fuzzy parameter set ,

(p1 (A)Jx 2 ) to be the posterior fuzzy parameter set, and P 2 (A)

to be the averaged fuzzy data set, where x 2 may be considered a

fuzzy outcome. (In the classical Bayesian formulation, i. = prod

and or is replaced by an intergral or sum which is possibly

weighted.)
In conjunction with the above remarks, we will assume that

the following general fuzz, bmpling experiment holds:

(a) pl(A) is known, but A itself is not known beforehand.

(b) (P2 (A)I.) is obtained empirically, sometimes through human

sources, via a panel of "experts" (rather than from the unknown A
via Bayes' theorem).

Bayes' theorem can then be applied, with the above interpre-
tation, to obtain the desired posterior fuzzy parameter set. The
key computation lies in the evaluation of fP2(A) in equation

(3). In addition to (a) and (b), assume that the following modi-
fication holds:

F_rst define the weighted averages

d n
w =w / w' (4)
n,j n, j-l n,j

where wA ; 0 are constants, and the normalized nth fuzzyn,J fuz

prior set w is given byn

4P (yj) = Wnj i =1. n (5)
n

S
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otherwise, n is zero.

If a panel of experts is used, each yj represents expert

5 ,where yj e X1 , j = 1,2,.....

(c) Formally replace for each n 2 1 in eqs. (1),(2), P1 (A)

everywhere by w n  and denote the subsequent value of P2(A) by

PAn and (PI(A)Ix2 ) by (Bn 1x2 )

The next theorem concern the asymptotic behavior of 'PA and
n

hence or (Bnx2) (yj) as n - First define

a n,j (x 2 )  P (P2 (A)ly j) (x 2 )'Wn, j  (6

a1 2 )  (P2 (a)Iyj)(x2)

n
(x2 ) Z a .(x 2 ) (8)

n

Asymptotic behavior of average buzzy data and

posterior fuzzy parameter sets.

Theorem I

Suppose the conditions for Theorem 0 hold with modifications
(a), (b), (c), for each n 2 1 , and suppose the constant sample
means converge:

lim P (x2) ( P (x2) exists; x 2 e X2  (9)
n-.o A AT 9n

Suppose also for all n 1 1

1 62
a~n Wn :s b n (10)

where 0 < a s b and e1,E2 > 0 are all constants, with

I + 4E < 11 2

Thus,

0 <C S w . SD ; j=l. ....... n, (11
n n,j n

0 < C n (a/b)'n-(I+ 1 2) < 1 , (12)n

0 < Dn = (b/a)'n-( 1 -2) < 1 , 13)
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where it is assumed that n > n 0 (b/a)1/(1-2) Note that0

for w' j  1 n,j i 1/n satisfies (11)

Then for the fuzzy set system determined by
(Pnot,',o) = (1-(-), prod, probsum) , for all n , and all

x 2 r X 2 ,

n
(PA (x2 ) = 1 - I (1-anj (x2 )) (14)

n j=1

4) (x2 ) S -log(l - *A (x2 )) S 4_ (x2 )"(1 + n ) , (15
n n

equivalently,

I - exp(-) (x2 )) ! OX (x2 ) S 1 - exp(-() (x2 ).(1 + Jn) )  (15')
n n n

where,

d
J -(log(1 - D ) + D n)/D n  (16)

lim Jn = lrm (Dn/(1 - Dn)) = 0 (17)
n-oa n-a

D Thus,

lim 4A (x2) ( A (x2) = 1 - exp(-) (x2 )) , (18)
n- n O

uniformly in x 2 e X , with convergence rate determined by eqs.

(15'), (16) Thus, for large n , all y. EX

4 (BnIx2 )(yj) - an,j(x 2)/(l - exp -R (x 2 )) . (19)

Theorem 2 (Central limit type theorem for a class of analytic
operator pairs.)

Suppose assumptions (a), (b), (c) and eq. (10) all hold.
Suppose also that (1 - (.), 4, 4or) is a DeMorgan system where

P& has a generator h [0,1] - [0,+-) which is strictly decreas-

ing with h(0) = + - , h(1) = 0 . Then

n
(I) (PA (x2) = 1 - h ( z h(1 - 4&(W njaj(x2)

n J=n

m- ISi -h ( Z h(l - w )
J=1 nj

S
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1 - h-l(n.h(1 - Dn)) (20)

Thus, if

lim (n.h(l - D )) 0
n-4 +

then

lim (PA (x2 ) = 0
n 4-t. n

(ii) Suppose also that for any fixed c E [0,1] , &(z'c) is
analytic in z about some neighborhood of 0 and that h is
analytic within some fixed neighborhood of, and below, I
Suppose, further, that in eq. (10)

10< E +E <1

1 2 2

and that

n
lim (Z A(x 2 ).w.) a(x exists,
n-+w J=l 2 nj 2

where for j = 1,2,...,

(x )  ( (z ,a (x ) )/(9 z ) z =

Finally, define

AO = -(dh(z)/dz)z= . * 0

Then, uniformly in all x. e X 2 ,

PA (x2 ) d lim PA (x2) = 1 - h-l(A .a(x 2 ))
n-.c n

exists, and for large n

(BnIx 2)(y ) h 1 (h(w nj) + h(a.(x2))) - h( A (x2))

Proof:

(i) follows from the monotone property of h For (ii):
expand out in a power series the function h(1 - (P(zc)) in z
yielding for all sufficiently small z , for c a (x2 ) at

2
Z=W nj

h(1 - 0&(zc)) = A o (x2)'z + 0(z 2 ) (21)& 0 2
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O(z ) indicating the remaining series has powers of z to at
least 2 Substitute (21) into the first part of eq. (20), not-
ing that

n 2 2)(-2 e +
Z 0(wn2 ) : n.O(D 2 ) O(n(-2(El+E2 ))

j=1 n

The next results are concerned with asymptotic properties of
combination of evidence, when discretization of possibility func-
tions is involved, as occurs typically when attributes concerning
an unknown papameter vector are statistical in nature and are re-
presented by probability density functions.

First, let B e V(R ) , where for any positive integer pth

the p discretization B : Dp [0,) of OB is constructed
p

typically as

-B (x) B(X) ; all x E D(p) P

where D 5 Rn is a discrete equally spaced lattice, where eachp
Rn-cube C (x) of D is such that lim A (x) = 0 and such that

P P4-
for all integers p Z q : 1 , Dp refines Dq (Dp may be

modified for truncations.) Then for any t-conorm or

Theorem 3 (Simple limit theorem for discretizations)

If or is an Archimedean t-conorm, then

lim (Por (PB (x)) = 1
P+ xED (P)

p

Remark 2.

If or = max , then in general

lim or ( (x)) < 1
P+ xeD (P)

p

The following theorem extends Theorem 2.

Theorem 4 (Limit theorem as information granularity approaches
zero)

(a) For each positive integer p , let D be a discretizationp

I
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of Rn as before and let C : D - [0,1] Also, let
p p

G : X x R n _ [0,I] be continuous, where X is any fixed space.

(b) Suppose P& is a fixed t-norm such that there is a fixed 6

0 < 5 < 1 , such that for each u e [0,1] , d(p&(u'v)/dv and

52q (U,V)/d2v are finitely bounded as functions of v e [0,5)

(c) Suppose Por is an Archimedean t-conorm with canonical

generator h , i.e. (see section 2.3.6)

or (u,v) = 1 - h I (min (h(l-u) + h(l - v), h(0)))

for all u,v e [0,1] , where h : [0,1] -* [0,+-) is monotone
decreasing continuous with h(1) = 0

Also, assume there is a fixed K , 0 < K < 1 , such that

dh(v)/dv and d 2h(v)/d 2v are finitely bounded functions of
v r [K,1]

Then for all e X

lim (gp()) 1 h- I (min (1(9), h(0)))
p +

where

g P(9) o r OP (O(°x)' C (x))) 'O

xeD P
p

r~ ) lira (( (C (x)'- v((PG (G x))) '

P- xeD pp

u-(u) -(dh(v)/dV)v=i" (y &(u,v)/5V)v=O

for all u e [0,1]

Proof: First ncte that

gp () = I = h (min ( z h(l - O&( G(e,x), p0 (x))), h(0)))
x4ED pp

Then for each u , expand h(l - &(uv)) as a function of v

about v = 0 , up to second order.

Corollary 1.

(a) Let f : .k R+ be a bounded continuous probability

density function, k = 1,2,.....
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(b) Let q be any fixed positive integer.

(c) Suppose #&, is any fixed t-norm such that

- > rq &, ... q 1 q u=..=U q=0

th

(d) As before, denote Dk, p  as the p discretization (with
mkk

all previous properties holding) for R , so that letting

fk,p(xk) fk(xk).k,p (xk)

for all xk E Dk, p  k = 1,2 .... ; p = 1,2,..... with

fk pfX) = 1
f (x
k,p k

Xke Dk,p

i.e., fk,p is a probability function.

In turn, define

x =(x ,x2  ,X) e D (q ) =D xx..D
q 2 q p 1,p q,p

f (q) Q f ,p(x ))'p 1 qp p

(e) Next, suppose &,2 is a fixed t-norm such that there is a

fixed 6, 0 < 6 < 1 such that for each u e [0,1]

Cp&,2(uv)/Cv and C 2 &, 2 (u,v)/O 2v are finitely bounded as func-

tions of v e (0,6)

(f) Let X be any space and let

M(q)
X R [0,1]

q

be any continuous function, where

m(q) dm +'".+m
1 q

(g) Let Por be any Archimedean t-conorm with canonical gener-

ator h ,

Por (u,v) = 1 - h- 1 (min ((l - u) + h(1 - v), h(0)))

for all u,v e [0,1] , where h [0,1] - [0,+-) is monotone (le-
creasing continuous, with h(l) = 0

Also, assume there is a fixed K , 0 < K < 1 , such thatI
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dh(v)/dv and d 2h(v)/d 2v are finitely bounded functions of
v e [K,1]

Then, for all a e X

lim (g(q)(9)) = 1 - (min ( (0), h(O)))

where for all 0 e X

9(q) (a) d or ( ,2 G ( ,q), f (q)(x ) ) ,

(XD (q)) ' q
( -q p

9 q

" (0) r V fk(P9k)dk
q q fq q k=1

V(u) -(dh(v)/dv) v= 1 , ("&, 2 (uv)/dV)v=O

for all u e [0,1]

Remark.

Frank's Archimedean family (see section 2.3.6) can be used to
supply C,,l ' 0&,2 ' Oor for Theorem 4 or Corollary 1.

8.5 Subjective probabillt yand general logical systems.

There have also been a number of papers attempting to in-
terpret fuzzy set concepts within the purview of subjective
probability theory. (See, e.g., Nalimov [180], Hanrahan [105],
[106]. Nativig [182], Hisdal [113]).

In particular, consider the important independent work of
Watanabe [268] and Giles [70 - 73]. Both have developed a basic
mathematical theory for fuzzy sets, in a somewhat different con-
text from Zadeh, in which they are concerned also with an
empirical basis for the numerical evaluation of the membership
functions, the various logical connections, and other relations
involved in fuzzy set models. Consider the following:

Let X be a fiAed space of points or objects and 1 (X) a

fixed space of properties, attributes, predicates or fuzzy sets.
Define for any C 9 X and A e 1 (X) , (C S A) or A(C) as that

atomic or primitive proposition representing compatability or
truth that C has property or attribute A or C is a subset of
fuzzy set A Introduce also the operators "not," "&," 'or"

which formally have the usual classical logical interpretations,
and then form the class of all compound propositions as the
well-formed strings, under not , & , or , of the primitive
propositions, so that at least a Boolean algebra % results.
(See also 2.2.) A similar result holds for all well-formed
strings of predicates. Watanabe restricts himself to the special
case of C = (x) , x e X , resulting in fuzzy set membership forms
(x e A) , A e 1(X) and fuzzy set membership functions 4 A(x)
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In addition, he uses first a fundamental composition operator
on 9PI(X) to develop his logical operators over a subspace 1(X)

of 1 (X) , where the composition operator is idempotent. Both

Watanabe and Giles approach the evaluation of a proposition
throuth the concept of a "test" in an extended sense. Watanabe
stresses more the nonsubjective probability ideas that in effect -
again restricting himself to (x E A) - A(x) , the fuzzy set

membership level of x in A , is to be interpreted not as the
truth (x e A) - (x e A) being either true or not - but rather as
the probability of observing (at least theoretically) that x e A
or equivalently, the probability that zero-one r.v. Vx,A = 1 ,

with 1 - cA(x) = probability (Vx,A = 0) , where 4A(x) , can be

estimated by a test procedure which counts the percentage of suc-
cesses. If the test for a proposition can not be repeated - due,
for example, to a time factor t occurring for At 6 IM

where for t' * t" , in general, At, * Atli - the test is called

dispersive (as, e.g., in a micro-level or single sample situa-
tion), otherwise the test is called non-dispersive. Giles differs
from Watanabe in that he stresses the subjective and, in general,
non-probabilistic, i.e., possibilistic interpretation: Using a
pragmatic approach through a "rational" betting scheme, he first
considers prob(A(C)) , which, when it exists is the classical
Savage Baysian subjective probability that A(C) occurs, relative
to a test individual. In general, however, prob(A(C)) cannot be
obtained but rather a probability interval ,
[low prob A(C), upp prob (A(C))] , is identified with upp prob
A(C) . For compound propositions, Giles establishes a dialogue
procedure for evaluation. The result is that in addition to the
numerical evaluations being obtainable by this procedure, a par-
ticular specialization of Giles' system is seen to be the same as
Lukasiewicz N I-logic (both semantically and syntactically) [214).

On the other hand, Watanabe's system differs considerably in form
(q.v.). Giles obtains a number of interesting relations between
probabilities, possibilities, and Zadeh's original concept of
possibilities, which may be proved with a set-theoretic context
not dependent upon the original betting scheme. Some of these
results are similar to other relations developed between various
definitions of uncertainty measures. (See Dubois and Prade [51],
Chapter 11.5 for a more comprehensive listing. See also Banon
[11], Kruse [146] and Puri and Ralescu [206] as well as the
extensive work of Klement and Schwyhla [142] and Klement et al.
(141] in developing fuzzy probability measures and their relations
to classical probability. See also section 3.3.)

(i) A (Giles) possibility function p may be defined by
p : - [0,1] , where n may be identified with some Boolean
algebra of subsets of X , say, (by Stone's Representation
Theorem) with p being nondecreasing w.r.t. subset inclusion,
p(O) = 0 , p(X) = 1 and for all A,B e ,

max(p(A),p(B)) : p(AUB) 5 p(A) + p(B)

(ii) Every finite additive probability function is a (Giles)
possibility one.

(iii) The argument-wise (w.r.t. sets A e ~ supremum of
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any collection of (Giles) possibility functions is also a (Giles
possibility.

(iv) Any (Giles) possibility function is the argument-wise
supremum of a class of (finitely additive) probability functions.

(v) A Zadeh possibility function p : - [0,1] where for
all A,B E % ,

p(A U B) = max(p(A), p. ))

is of course a (Giles) possibility function and for any fuzzy set
membership function, cA X - [0,1 , sup PA(x) is a Zadeh

xE B
possibility function of B %

See also Smets (e.g. [243)) for a subjectivist - betting
approach to fuzzy set modeling.

Remark.

Subjective probability and possibility are a necessity in
general decision analysis.

In expert systems, estimates of uncertainty quantities of
interest, e.g., certainty factors in MYCIN, weights of evidences
in clinical decision-support systems (see, e.g., Spiegelhalter and
Knill-Jones, [246]), are obtained subjectively. The subjectivity
is also dominant in applications of possibility theory. However,
possibility measures, as proposed by Zadeh to model expert know-
ledge, differ from other uncertainty measures in particular, from
subjective probability (e.g., Fine, [58], Good, [76)) by their
interpretation and their associated calculus. Different modeling
processes lead to different mechanisms for combining of evidence.
Thus, for example, when probabilities are used to express prior
knowledge, then Bayes' formula is used to update information or to
combine evidence. On the other hand, in statistical systems, the
concept of weight of evidence (Good, [76]), can be used to re-
present concepts such as "doubt," "ignorance" and "conflict of
evidence". (See Spiegelhalter and Knill-Jones [246].) More
precisely, following Good (76), the information concerning a pro-
position A provided by a proposition B , given a proposition
G , is defined to be:

log Pr(A I B,G)
Pr(A I G)

The weight of evidence in favor of an hypothesis H as compared

with hypothesis H 2  provided by the evidence E , given G , is

defined by:

Pr(E I H1, G)
W(H /H E I G) = log

1 2 Pr(E H2 , G)

Note that, both information measure and weight of evidence have
the additivity property.

The situation where expert knowledge should be taken into
account is very common in systems engineering. For example, in
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Structural Engineering (e.g., Au, et al., [8)), due mainly to
insufficient statistical data, the ignorance of structures and the
doubt in the actual hypothesis considered by a design engineer,
field observations of experts should be used in any final decision
analysis. More precisely, the reliability of engineering struc-
tures, the factor of safety and the margin of safety, which are
defined in terms of the imposed load effects S and the structure
resistance R (considered as random variables), are appropriate
measures of reliability. The probability of structure failure Pf

can be computed if the joint probability distribution of (S,R)
is known. However, in practice, often this is not the case! On
the other hand, the degree of "doubt" for the hypotheses consi-
dered in computing Pf should be assigned somehow to reflect this

type of system uncertainty. The value of Pf is then used in the

optimization, say, of the utility function relating the risk of
failure to economical and social consequences. This decision
making problem is clearly more general than traditional statis~i-
cal decision problems due mainly to the kind of data available and
the type of uncertainty measures involved. A procedure for
computing Pf is suggested in Au, et al., [8) where subjective

expert knowledge is expressed in the form of "judgmental factors"
reflecting the uncertainty in assigning a joint probability
distribution to (S,R) . The question is then: how to effectively
assign these judgmental factors in a given situation, or, to put
it in another way, how to model or encode expert knowledge? Once
these factors have been subjectively assigned by an "objective"
procedure or by ad hoc quantification, we are facing two different
types of uncertainty measures in a single decision problem.

Some of the above concepts will also be found in Chapter 9,
where an application to data association is considered.

I
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CHAPTER 9

AN APPLICATION OF GENERAL LOGICAL DECISION THEORY
TO A PROBLEM OF DATA ASSOCIATION

This chapter contains a detailed application of our theory
developed in previous chapters to a problem of data association.

A. Description of the problem.

Too often in the past, linguistic based information has been
neglected in favor of "hard" numerical or statistical data. How-
ever, with the advent of rule-based systems and new approaches to
the modeling of uncertainties, both literal and statistical infor-
mation may be treated from a common basis and effectively combined.

The following example illustrates how general logical systems
may be used to model linguistic and numerical information in order
to estimate a parameter of interest.

Although the problem considered here will be the target data
association one, obvious changes in notation and forms yield a simi-
lar model for medical or fault diagnoses. The results are based on
the work developed in [80], [77], [82], [83], [86], [91"], [91'''].

By a target history, we mean a collection of data concerning a
single target of interest which is sorted in two different ways: by
time and by attribute. Time indices correspond to report sampl-
ings and could vary from a single report to a large collection of
reports. Examples of attributes include: geolocation (2 - or 3 -
dimensional positions with possible additional parameters: velocity
or even acceleration information), classification-type, on-board
sensor characteristics, hull lengths, or even visual descriptions,
the latter resulting from an actual sighting of a vessel. This may
also be interpreted in linguistic form such as "irregular hull
appearance", "oblong shape like a type Q", "is approximately x
yards long", "appears to be flying a dark triangular-shaped flag -
maybe Antartica", or "has two or perhaps three missile launchers
on-board". Other attributes that may be present at various times
include: emitter fundamental frequencies of equipment (numerical),
tentative classification by intelligence sources (numerical or
literal), mode of operation (literal), as well as various measure-
ments of system parameters obtained by various sensor systems.
Each of these attributes, of course, could vary as a function of
time. The domain of possibile values for each such attribute is
assumed known and may vary considerably.

For example, the domain for geolocation could be

dom(geo) = {(x,z) Ix E, z e 9)

507
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where % 9 R2 is some region of interest and 9 is the set of all
positive definite 2 by 2 matrices or equivalently ellipses of
some fixed confidence level. In general, and T are time de-
pendent.

The domain for classification could typically consist of the
.Laoelb I'C2' ..... m ' whicn can well represent overlapping .

The domain for frequency could be a range of numerical values in
hertz, while a typical visual description attribute could be ob-
served ship flag color with domain consisting of (red, dark red,
orange, yellow, pink, white, ... ) , or the attribute representing
ship length could be in pure linguistic terms: very short, short,
long, about 300 feet, very long, etc. Although the possible domain
values for each attribute could also vary, let us assume that rela-
tive to some common fixed reference time - say, to the present - all
information has been suitably updated for both target histories and
all attribute domain values, with no missing attribute for either
target history.

A track history may contain as little as a single report or it
may consist of a large and growing (in time) number of reports as-
sembled from one or more mechanical or human sensor sources over an
extended period of time. Often, due to independent information
sources, two or more track histories may be established which are
suspected (or actually equated) of representing in reality the same
target or platform. Most commonly, this is based on either simple
unimpeachable identifications or upon reasonable matching of geo-
location information, which may be further enhanced by a comparison
of other attributes. All comparisons are carried out, of course,
with respect to suitable common updatings (or smoothings or pre-
dictions) of the reports in the track history files. In the past,
both the preliminary screening phase and the more refined final
decision phase in determining whether two or more track histories
"correlate", i.e., associate to the same platform, or not, were
based typically upon a combination of heuristic and statistical
hypotheses testing procedures with emphasis placed upon geolocation
attribute information. In turn, if two or more histories were
decided to represent the same object, the geolocation information
was combined and most often some variation of the well-known Kalman
filter procedure was used for the ensuing tracking aspect. If the
track histories were decided as being associated with distinct tar-
gets, similar tracking procedures were carried out for the separate
tracks. (For further background, see the extensive surveys of the
field made in [87] and [273]. In addition, [84] presents a general
mathematical model of the correlation problem, again with emphasis
on the geolocation aspect. See also Bowman (23].)

For simplicity, consider two target histories, each arising
from separate data/sensor sources. The more general situation of n
target histories could be handled either by a direct generalization
of the procedure developed here or, pairwise, by the establishement
of a confusion - or likelihood matrix of possible associations (see
Table 0) in which a number of standard algorithms, e.g., [146'] are
available for converting to an assignment, i.e., permutation matrix.
This is also related to the Birkhoff decomposition theorem which
exhibits the (nonunique) probability distributions of a random as-
signment matrix, whose expectation is the given "confusion" matrix,
L178].

'01
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TRACK
HISTORY 1 2 3 4 5

TRACK
HISTORY

1 1.0 0.8 0.2 0.1 0.3

2 0.8 1.0 0.5 0.2 0.1

3 0.2 0.5 1.0 0.7 0.6

4 0.1 0.2 0.7 1.0 0.4

5 0.3 0.1 0.6 0.4 1.0

Entries represent likelihoods or possibilities of cor-
relation between arbitrary pairs of track histories.
Clustering techniques may be used to group these his-
tories. Tentatively,two groups here may be formed by
inspection: (1,2) and (3,4,5)

Table 0

An Example of a Correlation or Confusion Matrix

Table 1 illustrates symbolically a tableau comparing data by
attribute for two given track histories.

Attribute Track history 1 Track history 2
updated to time t0  updated to time to

I I

A1  ()(2)

1 abe1

A2  2 (2)

2 2) 2

A3  VI (2)
3 3) 3

Table 1

Tableau of Observed Attribute Data.

S
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In Table 1, the values 1) (2) e D. = dom(A ,eresent

observed, measured, or reported values, j =1....m
Symbolically, we may write

V U, ) (2)

(2) (2)

m m

It should be noted that any or all of the attributes A .,A .Am

could themselves represent compound forms of simpler attributes.
For example, A1  could represent jointly geolocation and frequency

or geolocation, frequency and ship length, etc. Table 2 illustrates
these ideas further by displaying a simulated typical data
comparison by attributes. (Due to paging error,Table 2 is located on page
542.)

B. Error tables.

In addition, it is assumed that associated with each attribute
Ak is a known error table Pk of size nk by nk where

nk d card(dom(Ak) , where for any two values Z , e dom(Ak )

the entry

Pk(Z I Z11)

= probability or possibility that Z is the true value given

Z" is observed value. (2)

Thus, for any Zk e domain (Ak, Pk(-IZ k is either a probability

function or, more generally, due to possible overlapping of events,
representing values in dom(Ak) (to be made clearer below),

Pk. IZk ) is a possibility function, k = 1,2,...,m If Pk repre-

sents a probability function and perfect errorless measurements were
always made, then

Pk = Ink (nk by nk) , (3)

identity matrix, for some k, k = 1,...,m
In general, any Pk can be obtained in one of two ways; either

analytically or subjectively. The former typically occurs for
geolocation, frequency, and other attributes where the number of
contributing factors may be determined so that all relevant physical
and statistical relations may be modeled reasonably faithfully.
Thus, geolocation has typically associated with it multivariate
Gaussian error distributions; on the other hand, frequency can have
a more complicated analytic form for its error table derived from
e.g., dopplar shift considerations, using transformation of proba-
bibility techniques. of course, all such distributions must be
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suitably discretized and localized over the regions of interest. In
these analytic cases, the entire error tables Pk could be tabu-

lated or more conveniently written in formula form with evaluations
held back until needed.

On the other hand, if attribute Ak represents relatively

complex concepts which cannot be easily treated by an encompassing
statistical mo'el - such as involving many contributing factors
which either cannot be fully quantified and/or where there is only
incomplete knowledge of the actual conditional and joint probabili-
ties involved, then in such a case, Pk may be more appropriately

and simply obtained by querying directly a panel of experts. In
this situation, Pk appears in numerical form - although the domain

of Ak may be linguistic or numerical in nature. The panel of

experts act as human integrators of knowledge in producing Pk

See Table 3 for a simple numerical example of an error table.

Zi A B C D E F

21

A 0.9 0.4 0.7 0.3 0.0 0.5

B 0.3 0.8 0.4 0.5 0.1 0.5

C 0.6 0.4 0.9 0.7 0.8 0.6

D 0.2 0.5 0.7 1.0 0.9 0.2

E 0.0 0.0 0.7 0.9 0.9 0.4

F 0.4 0.3 0.5 0.1 0.3 0.1

Entries represent the possibilities that a value Zi is true

given value z2 reported or observed, for the attribute

Class. Note the absence of summing to unity for rows or
columns due to overlapping sets of elementary events each
class represents.

Table 3

A Typical Example of Error Table Pk Obtained from

Directly Pooling a Panel of Experts for A4 = Class.

Let us illustrate both the analytic and subjective modeling of
P ks by the example of classification:

Consider first the situation where classification can be
obtained analytically:

For simplicity, consider the situation described, moreS
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generally, in section 5.2 (F): Let G 1 9 (a,b,c) , G (,11)

G 3 d (1,2) , be the domain sets of the only factors considered for

possible classes. For example, G 1  could represent lengths, G 2

weights ,hvy, light), and G3 , snapes (of type 1 or type 2).

Define then the classes C1 .... C 6  by the following table:

-' I J

Define Ch folloinG Ievleestary event 2 vaslu rpes G of= values

C 1  ab d i1,2

C 2  b,c I1

C3 , a,c j IIO 1,2

C4 , x,b II, I 1,2

C3  ab,c Ix

5l

Table 4

Definitions of Classe.

Define the following elementary events - possible triples of values
from G, IGersel, o that determine the classes:

(aI,1) x 4 =(a.II,2) x. 7 (bII,) x 1 0 =(cI,2)

x2=(a,I,2) x 5 = (b,I,1) X8 = (b,II,2) x 1 1 = (cII,1)

x3=(a,II,1) x 6 = (b,I,2) X9 = (cI,1) x 1 2 = (c,II,2)

Table 5

Multiplicative Definitions of Elementary Events.

Thus we can tabulate for each class which elements are in it,
and, conversely, for each element, which classes contain it:
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Class C. Elements in Cj Class C Elements in CJ

c1 x 2' x5'x II C4 x3' x4' x7 ' x8
c 2  j x5' x9  H 5 x3' x7' Xl1
C3 X3' X 4 x 11, x12 C6 x10

Table 6

Elementary Events in Each Class.

Here, X = {x1 IX2 ..... x 1 2 ) , A = {C.... C6 ) 6 9(X) , and the

collection of all classes containing xj is C {x)(A)

xI _C{f (A)_ X CX)(A) -(x (A) x x C} {x(A)

X I C1 ) } x 4 j{CVC 4 ) 1j x 7 1{C4 'C5) 1 x {
1 0 1 (C 6 ) I

x2 I(C1 ) X 5 J{C 1 'C2) x8 04 1 1Xll1{C 3,C 5)

x3  (C3 ,C4,C 5 }) x6  (C 1 }  x9 (C2) x1 2 {C 3)

Table 7

Classes Containing Elementary Events.

Next, let V. be a random variable over G. corresponding to theJ J
0

true value of factor j and V. a random variable also over G

corresponding to the observed value of factor j , for j = 1,2,3.
Suppose also that (V1 ,V2,V 3 ) are a mutually statistically inde-

pendent triple, as are: (1 2,' 3), (V 2,' V3), ( 'lV2,V3 and

(, 2,V3) 2 Suppose further that the probability functions

p(V j ) and p( j) , j = 1,2,3 , are all known, where we use the

convention of identifying, where necessary, random variable and
their probability functions through their typical outcomes. Definep random variable V 4 (V1 ,V2,V 3) corresponding to the true joint
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factor values determining the true class, and similarly,
o d 0
V = (V ,V2,V3) for the observed (or reported) class. Then it

follows that:

p(V I V e Ck) =

27 Z p(V jIV = t).p( j = t) / Z p( = t) (4)
j=1 teG jk j=1 teG jk

and

p(Cm is truelCk is observed) = p(VeC m c k B(Cm! Ck)

Z p(V = t'V = t)op(V = t) / Z p(V. = t) (5)
L=1 tGjk = j j=1 tEGjk

Thus, p(Cm truelC k observed) is a computable function of Cm  for

each Cm  in A and may be interpreted as the fuzzy set membership
function or possibility function B for possible choices of which

class gave rise to the observation Ck , for any fixed k ,

k = 1,2 ._6 . These functions are generated by the conditional

random variables (V I C Ck) evaluated over the collection of

compound events A . In turn, the possibility functions B are

also represented as the one point coverage functions of the random

subsets (S I e Ck) of A which represent the possible inter-

actions of the classes k = 1,2,...,6. (See Chapter 5.) Here, for

any k , a typical outcome of (SI e Ck ) is some C (x (A) , the

collection of all classes C1 , C2 .... such that they interact with

respect to x , i.e., contain x. Table 6 presents the ten

distinct such collections of classes making up the range of

(SIe C Ck) The probability function for this random subset is

obtained from

(S I e Ck) = C (A) (6)

with

p(S = S I Q C Ck) = p (V = V') (7)

for any outcome S' of S corresponding to V' of V , which, in
summary, imply
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IB(Cm 1 e Ck ) = p(Cm E S I E Ck) = p(V E Cm I ' Ck) , (8)

for all Cm 6 A = {C1 .. C6  , for k 1,. ..,6 , where the proba-

0

bility function for random set (S I V e Ck) is given in (see also

Table 7) eq. (9).

= CkZ (p(V x I C C C k)) I1

{C1 } ]) i=1,2,6

p(S = (C3 ,C4 ,C5} I V e Ck ) = p(V x 3 JV 6 Ck) I

p(S = (C 3 ,C 4) I ) • Ck) = p(V = x4 IV ck) 1 (9)

p(S = (CI,C2) I 2 E Ck) = p(V = x5 1 6 ck)

p(S = (C6) I • Ck) p(V = x 10 C1 ck) , etc., ]
which may be evaluated through eq. (4)

Note that the function 4 B(. (I E Ck) , in general, does not sum

to 1 over A , since the outcomes C1,...C 6 are compound events

which are not all disjoint for random variable

(V I E C k ) , k = l,..... 6 Thus, we should not normalize B to

make it a probability function: it is a possibility function even
though it was obtained analytically.

Consider now the converse of the first situation
We know the classes of relevance A = (C1 ... ,C 6 } , but we do

not know all the contributing factors and/or we do not have a handle
on all the required probability functions involved in the factors;
but we do have before us a panel of experts who will give the possi-
bilities of true class values given observed ones. To simplify
notation, assume that a particular Ck is chosen and all results,

0as above, are conditioned upon the event V E Ck . Suppose then the

possibilities of a particular class being the true one, given Ck

is observed, is determined by the panel to represent in effect the
fuzzy subset B of A which is given through the membership (or
possibility) function OB : A -* [0,1] , where without loss of

generality

0 < B(Cl) < OB(C2) <... < B(C6 = 1

First recall the fundamental results previously mentioned in
section 5.2 (F):

There are random subsets S of A such that

PB(Cm) = Pr(C m e S) ; all CM C A (10)

m
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Guided by (also previously mentioned) the results concerning minimal
entropy or nested forms, we may choose, e.g.,

S = Su(B) = <B[U,1 ] (11)

U uniformly distributed random variable over [0,1] In this
case, the probability function for S is, by defining for
m = 1,....,6 ,

C (m )  (Cm,C1  ..... C6) ; B(C0) = 0 , (12)

p(S = C(m)) B B(C M) - B (Cm1 ), m = 1,...,6 (13)

Thus,

rng(S) = (C(m) i m-i ... 6) Q 91(A) , (14)

A = A' , and

(C M) (rng(S)) { Cm e rng(S))

= {C(),... C(m)) ; m = 1,...,6 (15)

Let

g(S) = U C ( (rng(S)) (C C (16)
m=1 m

Noting here for S : - (A) , we may choose 1 = [0,1] , with
U(w) = w , for all w G a Then it follows that:

S -1 (C(m ) ) = ( B (C m -1) ' B(Cm)] ,(17)

m = 1_ _ 6 .

In turn, define random variables V W and space X W arbi-

trary such that

(surjective) V(m) : (B( Cm-1)' B(Cm)] ) X(m) , m . .

Then define space X by

6
= ( ) (

M= 1

and random variable

V : n - X

by: for each w E f ,there is a unique m(W) , 1 : m (w) 6
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such that w e ( B(Cm(w)_I), 8 (Cm())]

whence

v() v(m( ))(w) (19)

Next, define mapping A

A : - 9M

(V(X) being the collection of all ordinary subsets of X) , by, for
any Cm E A,

d C V(S-(c (rng(S))))C m - (Cm)

m
= V([OB(Cm)]) = U X( ; m = 1,...,6 (20)J= J)

Then A is an injective mapping and it follows that for any
outcome

A
S =C v (A) , (21)

p(V E CM) = p(C m e S) = ,B(Cm) (22)

for all C e A

In particular, we may let each X W be minimally any

(disjoint) singleton:

X(M ) = (y(m) , m = .... (23)

Altermatively, let each

X (M)  , (24)

implying

V = S X = rng(S) = (C( ) ,...,C (6 )  (25)

In any case, we have obtained both (nonuniquely) a random sub-
set S of A , representing interactions of the classes, and a
random variable V , as above, such that the evaluation of V over
certain compound events from its elementary event space and the one
point coverage function of S all coincide with B , analogousto

the first situation. (See [86] for further details and the general
set of constructions.) Thus, again, the function B obtained from

the panel of experts is a possibility function and not a probability
function in general: it need not sum to one - as in the first situ-
ation - due to the presence of overlapping events (shown by the0
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random variable V over X ).

C. Inference rules and matching tables

Inference rules connect possible combinations of matchings of
attributes (to various degrees) of any two given track histories to
the correlation levels of the histories. We denote inference rules

as R t , t = 1,2,...,r , where the tt h  inference rule R t  is of
the form "if - or iff - (antecedent) attribute Ak a t,k - matches

for any two target histories, for all k e it I then (consequent)

the two target histories are considered to represent the same target
(or not to represent the same target) to degree 7t where

0 *t 5 (1,2_ .. ,m} , (26)

0 at, k , t 1 (27)

for all k e it I t =1...,r

at,k represents the degree of matching relative to attribute Ak
for any two target histories, and may be originally in linguistic
form such as high, medium, low, etc., or in numerical form. Simi-
larly 0 : 7t S 1 represents the degree of data association (or

lack of it), k E Jt I t = 1,...,r .

In symbolic form, analagous to the results obtained earlier,
the truth of rule Rt is evaluated for any possible set of values

(or "dummy" data)

( 1 () z (21)18t Jt

where

z (J ) = (Z)kJt ZkJ) e dom(Ak) (29)

for j = 1,2, arbitrary fixed, and prior target association

possibility or probability function

Q = f(e) . (30)

evaluated at any possible association level 9 e [0,1] (suitably
discretized, if required):

II(Rt(QIAJ t)II

.(~t(jt() ()) [Qgt 1
= c(M (Z (1),Zt(2) (1 - Qgt (31)

where
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o r - = , (32)

04(u,v) S B(if u then v)ii

for example,

Oor( not(U),V )  (33)

=(u,v) = i(iff(u, then v))II

= 4a ( .(u,v),P (v,u)), (34)

for all u,v e [o,i] ;

MJ(ZJ t(1) (2))tt ZJt

d
& ( ((a t,k)) (Mk(Zk( 1 Z k(2)))) (35)

ke it

where

0((at,k))  : [011 - [011

represents a t,k - intensification (or extensification), such as by

exponentiation as in

atk/(1-atk)
((at,k))(y) = y ; y e (0,1] , (36)

and

Mk : dom(Ak)xdom(Ak) - [0,1]

is a possibility function (actually a fuzzy set - binary relation)
representing the matching table corresponding to attribute Ak

k E Jt ; t = 1,...,r : (More on construction of the Mk's later.)

Analagous to the modeling of the error tables Pk ' inference

rules Rt may be obtained from analytic considerations or subjec-

tively, by polling a panel of experts. (The latter procedure has
been well developed in a number of related artificial intelligence -
expert systems, but usually within the framework of classical logic
and probability theory. (See e.g., [24] or [236].)

Consider the case of "analytic" inference rules. These are
based - and essentially equivalent to, or extensions of - classical
hypotheses tests:

Let r 2 0 be an unknown paremeter and for each possible r

(Y( Jr) , j = 1,2 , be two random variables (possibly vector valued
and often assumed statistically independent) representing observa-So
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tions of data for some attribute A1 , say, given r , where it is 4

assumed the relevant probability functions or probability density

functions are all known. Let A = A(Z) , where Z L (Z(1),Z (2 ) )

be a test statistic, with scalar function A ; 0 having, for each
fixed value 7 , known prob. dist. function Fr which is assumed

increasing over [O,b] , b - a pos. const., possibly infinite, and
such that, pointwise, Fr  is increasing in T . Then A may be

chosen based on invariance, uniformly most powerful test properties
or other considerations. (See, e.g., [154].)

Then a typical test for

H 0 -5 T : T0 0

vs. (37)

H 1 : I o b I

is given by, at any fixed significance level a, 0 < a < 1

For an, observed Z :

Decide H iff A(Z) & Da

iff 1 - F (A(Z)) Z - FT (Da) S a
o o0 0 (38)

Decide H iff A(Z) > D

iff 1 - Fr (A(Z)) < I - FT (Da) a Co

0 0

where thus

Pr(Decide H, I Ho true) S a (39)

Thus if data ass%- ation for the two target histories is to be
based solely on this t of hypotheses, i.e.,

Decide Q = 1 iff H is accepted , (40)
Decide Q = 0 iff H is accepted , J

then the entire procedure is mathematically equivalent to the
inference rule evaluation

11(R I (QIZ)) = P0 (M I M) Q0 1) (41)

where the matching table here M (a) is

1Q
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Si iff I - F (A(Z)) , a ,(a)(z) = o(42)
0 iff 1 - Fr (A(Z)) < a

for any Z E dom(A ) x dom(A1 )

Clearly, a "softer" more general form is obtained by replacing

M (a) by the natural full non-truncated matching table M 1 where

for all such Z as above,

M1 (Z) = 1 - FT (A(Z)) , (43)

0

the randomized significance level, and replacing exponent 0 by,

say, 0 : S 1 , so that R(a ) becomes
1

I(R 1 (QlZ))I = 4=(MI(Z),Q ) (44)

An example of the above is A1  geolocation, with r.v. (Zir)

distributed statistically independent Gauss 2(pJ) , j = 1,2

*such that

A(Z) =. (Z( I )  - Z(2))T(z(l) + Z (2 ))-1(Z( 1 ) - Z( 2 )) (45)

with

d ) (2) T (1) + (2)- (1) (2)
= (P )(Z - ) (46)

where 7o  is some upper bound chosen for maximal separation dis-

tance (or To = 0 could be chosen) , and hence (A(Z)Ir) is

distributed noncentral chi-square with two degrees of freedom and
noncentrality parameter r , etc.

If several attributes, say, A 1 ... 'An each has an associated

statistical test with test statistics A = A (Z(J)) and well-

behaved cumulative prob. dist. functions Fj , J = 1,...,n , with

Z M ... Z(n )  all statistically independent, then these may be

combined into one compound test for compound attribute (A1 .... An)

by, e.g., the construction of the minimum of individual randomized
significance levels

K(Z) mi (1 - Fj(AJ(Z(J ))) , (47)

For any ZS
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Accept H0  Iff all 1 - FJ(Aj(Z(j))) ; a

iff K(Z) a (48)
Accept H1 iff K(Z) < a

where we note the level of the test is

Pr(Decide HIIH 0  true) s 1 - (1 - a) (49)

(For background or more general constructions of compound hypothese
tests, see, e.g., [154] and [18].)

Thus, if data association were based only on this compound
test, one would have equivalently

11R(a) (QIZ)I = P (M(a)IZ),Q 0  1) (50)

where compound matching table is

1 iff K(Z) Z a

n 1ff K(Z) < a

However, as in the modeling of the error tables, in general, not all
of the relationships between data association and attribute matching
is obtainable as above; a panel of experts may be utilized to derive
further relationships - especially those involving non-statistically
oriented attributes such as flag color, class1fication, visual
sightings, etc.

Again, as before, the inference rule corresponding to the com-
pound test described above in fully general form is

11(Rc(QIZ))I = (P (MC(Z),Q') (52)

where

Mc(Z) K K(Z) (53)

and

0 7 1

In general - especially for those attributes involved in sta-
tistical hypotheses tests - matching tables are distinct in form
from error tables. However, in the case of many subjective ori-
ented attributes, matching tables may be reasonably assumed the
same.

See Table 8 below for an illustration of a typical inference
rule.
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I
1. Natural Language Form From Combination of Panel of Experts and

Standard Statistical Hypotheses Testing:

R 1 = "If two track histories are close to each other and have

somewhat similar fundamental frequencies, but differ
considerably with respect to motion type,
then there is some - but not much - chance that they
correlate."

2. Formal Language Form:
For any Z and ,

Truth (if modifiergh(Z in M & (Z1 2 ) in MI)) &

modifier med((Z5 (1 ) in M & (Z5 (2) in M5 )) a

modifier 1o((Z (
) in M6 ) & (Z(2) in M6 ))

rhen modifiervery low(9 IN Q))

3. Full Truth Evaluation-Possibility Function Form;
for any Z and a ,

4=(anLeced(Z) , conseq(Q(e)))

anteced(Z)= ,a(M (Z( 1 ),z( 2 ))E M (Z( 1 ),z (2))E2 M (Z( 1 ) ,Z ( 2 ) )
3

&'1 1 '55 '5 '66 '6

conseq(Q(G)) = Q(e)G

(i) The constants are to be chosen such that

0 < G < E3 < E2 < EI

(ii) Logical System I = n &' or) = (1 - (.),prod,sum)

chosen.

(iii) M (ZI),Z(2 )) - 1 - cumul. distrib. funct. of chi-square

random variable with 2 degrees of freedom evaluated at
W = (z(1)-z (2) )T(Zl+Z 2) - 1 (Z 1 ) -z ( 2 ) )  -r,rZ2 er o12 '11' i' error

covariance matrices.

(iv) M5  is similarly evaluated from a closed-form formula while

M 6  is obtained from a numerical table.

Table 8

An Example of Symbolization of an Inference Rule.
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D, Additional comments on error tables, matching tables, and
inference rules.

Error tables and matching tables

An elaborate example of an analytically obtained error table
for an ideal classification attribute has already been presented
(Tables 4 - 8, etc.). The actual error table for this attribute
would then be a 6 by 6 table of numbers lying between 0 and I
bei'ng evaluated correspondingly. (See eqs. (4), (5)).

Another example may be furnished by the attribute
A3 = length, with dom(A3) = (B1 ,B2,B31 B4}

where

B1 very short : approx. less than 50 ft.

B 2 short approx. between
50 and 100 ft.

B3  moderate : approx. between (54)

100 and 200 ft.

B 4  long appprox. over 200 ft.

Thus, P3 consists simply of a 4 by 4 table furnished by the

consensus of a panel of experts in response to the question:

p(true length = Bm J observed length = Bk) ? (55)

for 1 S k,m S 6 , p being probability or possibility.

Table 9 presents plausible values for the above equation (55):

Observed B 1  B2 B3 B4

True

B1  0.9 0.6 0.4 0.5

B2  0.5 0.8 0.2 0.6

B3  0.4 0.1 1.0 0.2

B4  0.4 0.6 0.1 0.9

Table 9

Error Table for Eq. (55).

Thus, Table 9 shows

P3(z 
j )  = B2  I = B3) = 0.8 , (56)3 3 2 3
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regardless of j = 1 or 2
It is not unreasonable here to allow the matching and error

tables for A3  to coincide, following suitable symmetrization,

i.e., M3 = P3  Similar remarks hold for the classification example

previously presented (for the second situation, not the first).
Consider now some examples of analytically obtained error and

matching tables. These could typically involve attributes such as
geolocation, frequency or class (as under the first situation in the
previous example).

Thus, for A1 = geolocation, we may have, regardless of

J,j = 1,2,

PI(Z(J) 2(j)) = dirac(Z - c).Gauss (R,i) (57)

where Z(J )  and 2(j ) are arbitrary with1 1

Z ( j )  d (X,r) ; Z( j )  d, (58)
1 zU 1(~

2 0
X, E g2 suitably discretized, Z,X E class of all 2
by 2 positive definite matrices, and hence

Z(J),2i) dom(Al) = X x ,

and Gauss' is a probability function over formed by suitably

discretizing the bivariate distribution Gauss 2
However, as noted previously, the associated matching table M

is quite different from P1 here:

M ( (1), (2) ) = I -F (A(ZM1)Z (2)) (59)1I(l , ) = 1 - F I

for all Z = (Z(1 ),Z (2 ) E dom(A1) x dom(A1) , with A given in eq.

(45)).
Another example of an analytically derived error table is that

for A2 = signal frequency:

From simplified physical considerations, the relationship
between true source frequency and received frequency is given by the
doppler shift equation (255] given, regardless of j,j = 1,2, by

2()= (1 - (VT/Vs)- cose).Z j )

2 TS2
d observed frequency at-rest receive (60)

V T =target speed, (61)

VS = speed of sound in water (62)

(assumed constant),
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U )  true frequency at source, (63)

a = angle between receiver (64)
position, target location and target motion
velocity measured counterclockwise.
(See Figure 1)

Receiver .. . . . .. . . . . . . . . . ... Target

oean \Z Target motion

Figure 1. Basic geometry of droppler shift.

Suppose then 9 is distributed uniformly over (0,2w] and VT

is distributed uniformly over [a,b] for some suitable chosen range

7 a I b , with ,VT , and 2" )  all statistically independent.T ' 2
Then it follows by use of standard transformation of probability
techniques that we can derive the conditional probability density
function

[g0 (W/a,W/b), if W < 0

2 2/g 2 19o(W/bW/a), if W > 0 (

where for all u,v E [0,1]

g0 (u'v) (1/2)log 1 - 1u - ( _66)

1 2 1 v2

W Vs(i J)/z j) - 1), (67)

. * 2( 2 (68)

Again, by suitable discretization over dom(A2) 9 R+ , the

corresponding error table P2  can be constructed from P2 in eq.

(65)
On the other hand, the matching table M2  here may be treated

simply by first assuming Z 2 ) are statistically independent

Gaussian. (See also eqs. (37) - (46).)
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I Inference rules

Eqs. (37)-(53) adequately cover inference rules analytically
obtained through statistical tests of hypotheses. However, it
should be pointed out again, that the relationship between the
rejecting or, accepting of the hypothesis concerning a single
attribute or, more generally, a collection of attributes (in the
case of a combined test of hypotheses), and the final decision to
"correlate" - i.e., decide the target histories represent the same
target, is, in general, a subjective choice of how much weight or
reliability the hypotheses test has with respect to the final
decision. For example, two different targets could truly possess
the same or similar locations, frequencies and classes and yet not
be the same object. Thus, all factors contributing to this iden-
tification should be accounted for, and since in practice this is
not always feasible, this may be incorporated into the inference

0rules, by softening the consequents, i.e., replacing Q 1 by

Q as in eq. (44) or eq. (52)
On the other hand, inference rules may be formulated completely

subjectively, by querying a panel of experts in the field. Two
typical examples of this include:

(a) R, = "If A 3 0.6 - matches and A8 0.8 - matches,

then 0.7 - level intensification holds for Q." (69)

Here, J= {3,8) , and we may symbolize , for any

Z~ (Z(1 ), (3, Z1, Z(2~) (70)

Z3, Z 3 ) e dom(A3) , Z I ) 8 E dom(A8) , and for any

Q e [0,1] :

RI(Q I )J1

(, Z((M3(Z ( ),Z(2)))1.5, (M (Z ) 2 ))) " " " , Q2. 3 ) (71)

(b) R2 = "Iff A 1 does not match that well but A2 highly

matches, then correlation probably does not occur". (72)

Here, J2 = (1,2) , and we may symbolize, using the techniques

illustrated previously as, e.g.:

R2 (Q I )Z2

) l M(M, ,ZQ)))) (73)

2
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where low ' 'high' 'prob : [0,1] - [0,1]] may be modeled as ex-

ponents as before or otherwise, as in the previous examples.

E. Combination of evidence for the correlation problem.

The basic structure of the technique for combining of evidence
may be summarized as follows:

(a) Observed data: categorized by attributes and target

history.

(b) Error tables Pk ' k = 1....m , which can be used to

connect 2 with any Z

(c) Matching tables Mk ,(with Pk = Mk or Pk Mk)

k = 1 ... m , leading to:

(d) Inference rules R_ , t = 1,...,r which can be used to

connect any Z and Q 3 P(e)

Now, let

R {R t I t = 1,2,...,r)

P (P k = 1... m)

Then from the property of conditional possibility functions -
see also the more general results of section 8.3 - the posterior
possibility function for t is given by, omitting the subscripts
projx(C0 ) I Ck ' k = 1,2 ...., C0 , etc. for simplicity, prior to

diagonalization and normalization,

I P)= (Por c(e,Z I ~ ; RP) , (74)

-0

where

dm
G m x (dom(Ak) x dom(Ak)) (75)k-i

and general fuzzy set system (4no,@&Por) is c-iosen,

where

€( , I R,P) I ~z ( ~ ~;,P) , P(z I R'P)

assuming that sufficiency relaticn for the inference rule and error
table effects hold:
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@ (S I Z, ; R,P) ( Z ;P~ R), (77)

4(Z I ~ ; R,P) = 1(z I P) (78)

Consider now the error table effects. This expression does not
really represent combination of evidence, but rather the joint error
function. Hence, a natural evaluation is

( ) = (Pk(Zk k) (79)
k=l..m

where

Pk(Zk k )

=&(P k (Z() (1)), Pk(Z (2 1i( 2 )) (80)

for all Z j), k  e dom(Ak) , j = 1,2, ; k = 1,...,m
k 'kk

On the other hand, the inference rule effect does represent
combination of evidence.

The first approach follows the idea of the extension principle,
a specific case of which is related to the fuzzy set extension of
the Weak Law of Large Numbers (see czction 8.4):

Approach 1.
r

Let g: [0,1) - [0,1] be a given function such as

r
(a) gr(Yl, .... ly_) Z z w .. ( )

r lj=r rj j

r
0 < wrj < I X wr j =

or

(b) g 'Yr) 6Yl . . .. Yr

S0 iff 3 yi * yj
1 : ij : r (82)

Yl iff y = . Yr '1ff y=

where gr represents some combination of descriptions of Q by

each rule. Then by the "extension principle"

I
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R)~ P 'gr (Ril..I)ZQ

Srelative to1
Q(1 q(O 1

Q(9 ) q(9
r r

r 9

(discretizedl

=( R (11R (q(O~ Z~ )II) .(84)

For simplicity, from now on, we drop the notation II(R t)11 for

the simpler R t*

Approacn 2: (See [80], [82), [83].)
rLet gr:[0,1] -. 0,1] be a nondecreasing combining func-

tion, such as gr= & or gr= wtdsum as in (a) of Approach 1.

Then there is a unique fuzzy subset A of G 0x [0,1] such that

for all a 1 ... a e [0,1),

A g(al..a r),1] 2 fl (R t [a j,1 (85)

minimally with respect to set ordaring. Indeed,

4) =.r R l.. Rr (86)

If g r is a strict Archimedean t-norm, then there

is an h -. [0,1] - R +with h decreasing, h(l) = 0 , such that

-1 r
.ry'''Y)= h 1 ( Z h(y t)) (87)

(See (140].)

Then

w r(al ,... ar)=9(gr(Ri ....Rr))- [gr(a, ... 'a r),I]

r r
-(V Ih Z h(R t(V))) 2: h Z h(a t)))

t=1 t=l
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r r
S(V 1 Z h(Rt(V)) : Z h(at)) (88)

t=1 t=1

In particular, for a1 =.-=ar=a

I rw a .ar= ( h(Rt(V)) :5 h(a)) (89)wra r.. ".= = V

Note - as seen in previous -:xamples - when fuzzy set systems
= (1 - (.),prod,bndsum) is chosen and all possibility functions

involved are also probability functions, then the above equations
all reduce to the classical Bayesian forms.

See Figure 2 for a flow chart summary of the combination of
evidence technique used here. This presents only a simplified
scheme for combining evidence. Based on the results in section 8.3,
(see Remarks 1,2) and in 8.4 (Theorems 3 and 4), in general, it may
be better to use a hybrid logical system in evaluating the posterior
function for a . Thus, if A1 .... Am, denote statistically based

attributes, while Am,+1 .... Ami denote subjective based ones, it

may be appropriate to choose a @&, to combine the first group for

error table effect and some &,2 for the second group, in place of

a single 4& . Moreover, &,l ' a,2 may well be chosen as

Archimedean t-norms. On the other hand, since inference rules
typically operate on combinations of common or similar attributes -
varying basically only on intensification modifications for possible
attribute matches - 0a = min may be most appropriate for obtaining

the overall inference rule effect. Also, in obtaining the marginal
posterior function for 0 , it follows from the above quoted results

of sections 8.3 , 8.4 that the single projection operator or may

be replaced by max over Z" 9 (Zk) and by some
- k k=m'+l,..in" an bysm

Archimedean t-norm over
z. (Z where as usual, Z (Z i) Z , for track

~(k k=1. in,' k k k
histories i and j ; k = 1....m" In addition,

Por = max seems most appropriate, according to the above reasoning,

for obtaining normalization as in section 8.3. See also the com-
ments in Goodman [91'''], where several principles or guidelines are
developed for choosing types of t-norms and t-conorms. Unfortunate-
ly, the choice of the most appropriate logical operators, except for
the above general guidelines, still involves a mixture of art and
intuition.

As an application of the above principles, the combination of
evidence technique (based on eqs. (74)-(80), (84), etc.) becomes:

diag(0 Z,R,P) = &,4 (( 0  I diag; ,R,P), univ(diag)), (90)

solving for (GI diag; ,R,P) , 0 : 0 $ 1

Puniv(diag) = max (9 I 2,R,P) , (91)univ 0 < 1
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(diag( e  I ,R,P) = (a i R P) = ... m" (92)

I ,R,P) = max orI (93)
all Z" ball Z'

(P ,Z I 2,RP) = %&,2(%S(9'), P'(-Z' I ')) (94)

OG(GZ) 0 &,2(P"(Z" I i"), R(~ I )) (95)

R(GZ) = min (Rt(Ot I )) , (96)
t=1,2, ..... r

P,(z.~ , ._ = . ( P ( ( ),2 )), . (,Z(2), 12(2)))) (97)
k=i,2 ,... m

k=m'+2,...,m"
F" (Z" I~" (P(()21)P(()22) (98)

where Z = (Z',Z") , ~ = (2',2"), etc., and &,1 0&,2' (*&,3' %,4

are Archimedean t-norms and or is an Archimedean t-conorm such as

chosen, e.g., conveniently from Frank's family - see section 2.3.6.
For other approaches to the combination of uncertainties, see

(23], [24], [236], the critique of [236] as presented in (120] as
well as the discussions in Chapter 8.
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Expert Panel Analysis Prescreening: Pick Pair
-Techniques of Track

I Histories

Library
___________Inputs

Store: P,M,R

______ Compute: V=Set of integers
representing attributes

appearing in Z

Select from

library:
P={PkIk in V}

R=(RtVt subset of V)

Compute for all possible Z , Error Table effect:

(I&P (P (ZkIz)

(k in V)

[Compute for all possible Z and 0 , Inference Rule effect:

=PGZ,) (R t(Q(9 t)IZ))[over all t1
such that V t
subset of V

Compute joint posterior function for all Z and :

0 & ( O(S Z,R),p(ZlZ,p))

Compute posterior function for all 0

o
GI Z,R,P) = for (v( ,Z]Z,R,P))

L (over all Z)

Normal ze

Sutput: Tabulation of P(91~,R,P) vs. e

Figure 2. Flow chart structure for combination of evidence
algorithm applied to correlation problem.
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In Figure 2. the following legend holds:

is observed data, Z is variable dummy data,

P = {P1,P2 ....) is set of all error tables,

R= (R1,R2 ....) is set of all inference rules,

M= (MI,M 2 .... ) is set of all matching tables,

Q(G) is prior possibility function of a ,
a is correlation level between two track histories,

= (#not&,or) is logical system chosen.
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The computation of 4(01 ; R,P) , etc. has been established as

an algorithm in PACT - Possibilistic Approach to Correlation and
Tracking (80], [82], (86]. This involves two looping processes:
computations of Z and Q = q(e) . As an approximation, whenever

an attribute Ak is such that either a difficulty arises in the

obtaining of Pk or dom(Ak) , although discrete, is too large, or

simply to reduce computations of looping through Z , one has the
option of assuming formally that Pk represents errorless mea-

surements, i.e., Pk = I In this case, this is equivalent in the

computations for *(8 j Z; R,P) for any Rt(Q I Z) with k e J

(i.e., involving Ak) to, in effect, replace Mk(Zk) in the

antecedent of Rt by Mk( ) See again Figure 2 for an outline

of the PACT algorithm.
The PACT algorithm may be considered an example of a nonse-

quential inference rule expert system approach. More dynamic
inference rule systems are described in [24], [236] - but with
non-fuzzy set approaches, where inference rules are "fired" (or
activated) or not, depending on whether the antecedents are satis-
fied or not. See also the surveys in [183] and (260]. Again, we
ask: How to choose the particular fuzzy set system ( no,,or)*

Recall that these operations may be considered infinite-valued
(i.e., [0,1]-valued) extensions of classical logical operations.
These extensions are highly nonunique. Two guidelines may be used
in choosing a particular fuzzy set system: theoretical consider-
ations via isomorphic-like relations between, e.g., semidistri-
butive systems and random set operations (Chapter 6) and empirical
considerations ([250], [291], and Chapters 8 and 2.3.5 . See, also
(92] for further discussion.) In dealing with human informants,
care must be exercised in extracting the maximal amount of unbiased
information, e!pecially in the modeling of inference rules. This
requires improvement of psychometric techniques in modeling such as
outlined in [195'] or [21] (especially, the first chapter). See
also [220] and [63] for systematic approaches to modeling of member-
ship functions from a subjective viewpoint.)

An alternative to obtaining inference rules completely empir-
ically is to use an inductive procedure on selected samples of input
attribute matching intensities and corresponding observed consequent
(i.e., correlation level) matching intensities analogous to that
found in [177] or [208].

It is often desirable to be able to interpret the output of the
combination of evidence - the tabulation of the (normalized)

posterior function 0(9 1 diag ; ,R,P) vs. 0 , for all 0 e [0,1]

If the function is monotone increasing, it follows that it may be
formally interpreted as a probability distribution function over
[0,1] . On the other hand, in general, this will not be so, and a
Lebesgue-Stieltjes signed measure interpretation may be most appro-
priate. (See section 2.3.9.) Correspondingly, a natural single
figure-of-merit appears to be the Lebesgue-Stieltjes total variation
mean

0"



536 Goodman and Nguyen

p1  J f 1 d f(e I diag ; Z,R,)I (99)

9=0

Another figure-of-merit is based upon the conditional random varia-
ble (W I Su(B0 )) , where B is the fuzzy set represented by the

above posterior function, and SU  is the one point equivalent

nested random set (see Chapter 5) equivalent to B° , i.e., letting

0C = f( " I diag 2,R,P)
0

SU(Bo) =
0

where U is a random variable uniformly distributed over [0,1]
For any outcome Su(B 0 ), (W I S u(B )) is uniformly distributed over

Su (Bo) Then the desired figure-of-merit here is

2 E(W I Su(B0 )) (two-stage mean) = E(W) (100)

It easily follows that if the posterior function is unimodal at
say 0 , then

P 2  = (l/2)p1 , (101)

dI = 20o - (B (1) +

1 
o

f PB (G)dG - f B (G)dO (102)
=0 =0 0

0

When 4B is monotone increasing (and hence B () = )
0 0

then the above finally reduces to

1
p 2 

= (1/2)pi = (1/2)(1 - f *B (9)d9) (103)
=00

Other figures-of-merit may be constructed. An open question
connected with this problem is the determination of such a value
which is invariant with respect to any random set one-point-cover-
age-equivalent to B

0

F. Some asymptotic results.

Asymptotic results were previously obtained for the general
combination of evidence problem in section 8.4. Here, more speci-
fic results are obtained for the correlation problem. Consider two
fixed track histories i = 1 , j =2
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Without loss of generality, suppose A1 .... Am are statis-

tical attributes, where for each Ak , the discretization result

P Z() ()) Z(t L)).*d (Zt (104)

holds, for all Z k ' k e dom(Ak) g m , where k .  ) ) is

a bounded continuous p.d.f., £ = 1,2 and A (Z ' )) r Rmk is a
k,p kci

sufficiently small mk-cell, so that P 2")) is a probability

function ; k = 1 ..... Here p indicates the pth discretiza-

tion state and it is assumed that cells Akp(Z (t)) forming the
mk

discretization Dk,p  of k refine each other to- ward 0 as

p - + W . Since for these statistical attributes, although in
general M k * Pk ' Mk has a form derived from Pk or at least the

domain for Pk (based on statistical hypotheses testing using

randomized significance levels - see eqs. (37)-(53)), Mk is also

affected, through its domain Dk,p replacing D k , etc. Thus, if

affected, Mk,p  replaces M k , k = .

Next, suppose Am,+l ..... Am, ,  are subjective attributes so

that error and matching tables coincide:

P p(Z f)  1 2( ) Mk p(Z t),2, 1,2 (105)
k,p k k k,p kc I

for all Z(' ),V-) e dom(Ak) , k = m'+l, ... ,m" , where p here

indexes the pth time of knowledge concerning Pk (and thus Mk)

The contribution of the pth discretization Mk,p  for Mk , for

all k , k = ..... m" , in turn, when substituted into any
inference rule Rt , yields the corresponding Rt p ,

t = 1,2,...,r.
Suppose that the posterior function, adding subscript p , is

indicated by

B= p(" I diag ; Z,R,P) ; E [0,1] , (106)

where equations (90)-(98) hold (with subscript p properly added).
Suppose also 'P&, 1 '&,2 and (or , with generator h

satisfy differentiability conditions (c), (e), (g), respectively, of
Corollary 1, section 8.4.

Then the following result obtains:
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Theorem (See also Goodman (91''').)

Under the above assumptions,

Odiag,+(-o( I ,RP) __ r Cdiag,p(o I ,R,P)

1 1 - h-1 (min (C(Q,2),h(0))) , (107)

max (r(e,Z"; )) , (108)
(all Z")

r(e Z"; ) r r 2m E (V( G (OZ; ")) 1 (109)

(Z' ') 0

where the statistical expectation E (.) is with respect to

(Z .' I )

Z' , considered now formally as a random variable with p.d.f.

f(. I') , given by

f.(Z, I2) r ZY (fk(Z ( )  . (1±0)
- SkSm, kk k

1=1,2

for all Z'- (Z k 5c) m EI 5 t=12

where constant r for q = 2m, is given in (a), Corollary i,q

section 8.4 and function V is given in the conclusion of the
Corollary;

G (0Z")~~ dlm G,p(OZ;")~ I

and as in eq. (95)

0 d 0

~Gp((?, = "P&,2 (P( I Z) , ( ) (9 I Z)) , (112)

for all Z (Z',Z") and all e [ [0,1] ; p 2 1

Proof: Immediate from Corollary 1, section 8.4.

A simple example.

Suppose m = = = ,2 = &,3 = &,4 = prod
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S Cor = probsum , urn P" (" ") = , and r = I with
R + (P) R "

)Z) = R'( I1

o'(1 - M1 (Z~ ),z 2 ) 1 1

= 1 - Ml(Z ),Z I  1 (1 - ) 1 (113)

for some fixed a1  1 > 0 ; all a [0,1] Then r2m, = 1 ,

P(x) = x , all x e [0,1] Suppose also, f (Zlt) (t)) is the

p.d.f. at ZIt ) corresponding to the Gaussian-Dirac delta

-1A (Z ) )
1 2 1 1

e__. 8[ z - z I  , (114)

(2w) det
1

(f' ) d ( t) ( ) (1t)16)) t ,_ o(e

= 1 z1 1 111 1

zI  (y ,1 ' I ) (117)

where Y M O e) R( p) ,
wher ( n P 1 ' 1 t E Rn l  positive definite, so

that without loss of generality m I = n + n , t = 1,2 Suppose,

finally, M arises from the standard test statistic (see

subsection (C) of this chapter.);

M (Z'I),z( 2 )) = 1 - F (A (ZI),z (2 )) (118)
1 1 '1 n 1  2 1 '1

where F is the probability distribution function of a X2

random variable and

A2(Z') = A2(Z()z (2) )

d ( -Y(1  (2 ))H(1) (2) -1 ( 2
(1 1 1 +Z ( 1 y1 (119)

for allZ 1
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Then it follows that

(Odiag,+ le ,R,P) I - e , (120)

where

d 1) 2 ))a 1
1(9 ;*Z- - (1 - 9 E 2 ((1 F 0( 2 a,

,A n(2A'2()

(121)

a monotone increasing function in 9 , so that

)univ;+ (diag) = 1 - e 1  (122)

and hence for all 9 e [0,1]

(P (Q I diag ; 2 ,R,P) = (1- e e) (1 - e 1 . (123)

If n1  is even, a relatively simple form exists for Fn In

particular, for n I = 2 , F 2 (x) = 1 - e-x/2 , x > 0 , and hence

0 0

(9;z') 1 - (1 -9 ) • (a1 ;Z') , (124)

where

A (2'

a 1 e 2(a + 1) A2 , (125)

by straightforward manipulation of a noncentral chi-square p.d.f. as

a Poisson mixture of central ones. Note that

4+( I diag;2,R,P) is monotone increasing in 9 , up to 1 at a

1 , and for any fixed 9 , a1 , 1 , is monotone increasing in

the weighted squared "distance" A 2 (2') compatible with +W

viewed essentially as a formal probability distribution function
(except for 4+(0) > 0 in general). Finally, note that as

a -. 0 ,1
o-9 1 -1

,)+ (9 diag;Z,R,P) -- (1 - e ) / (1 - e),

0
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CHAPTER 10

SUUIARY OF THE MIN RESULTS AED OPEN QUESTIONS

10.1 U

In this section, a brief description of the main results in
previous chapters is presented together with concluding remarks.

In the Preface, several technical and mathematical definitions
concerning uncertainty modeling were discussed, Including: systems,
states, processes, attributes, system uncertainties, experiments,
dispersions, generalized sets, general logical systems, truth func-
tionality, multi-valued logic, negations, t-norms or conjunction
operators, t-conorms or disjunction operators and copulas.

Chapter 1 provides a basic Introduction to the subject matter.
Section 1.1 develops motivation and a basic framework of analysis
for problems involving linguistic information. The use of observed
data (numerical or linguistic), error distributions or dispersions,
and Inference rules (by experts, if possible) is emphasized. The
general combination of evidence problem Is also introduced as an
Important objective of knowledge-based systems. The problem of
internal vs. external modeling and the development of general logi-
cal systems Is also discussed, with some emphasis upon the major
problem of resolving ambiguities that arise in modeling linguistic
Information.

In section 1.2, a presentation is made of the modeling and use
of natural language Information for multiple-valued logical set
theories. In addition, some basic connections with random set
theory are also mentioned. Finally, section 1.3 presents a brief
outline of the contents of the text.

Chapter 2, symbolization and evaluation of language, consti-
tutes a large section of the text - necessarily so because of the
foundations it lays for investigating uncertainty modeling. Section
2.1 is succinctly summarized in Figure I, where the flow of know-
ledge from conception to evaluation is symbolized. The pertinant
aspects of this transition Include: the real world as a problem
generator, systems of Interest, cognition, which through communi-
cations gives rise to natural language expressions, which in turn
through appropriate parsing techniques, lead to formal language
definitions, which in turn through semantic evaluations, lead to
general logical systems. Finally, combination of evidence pro-
blems - arising from real world generations - may be treated via
knowledge-based systems, consisting of a general logical system and
a feedback loop to both a panel of experts in terms of their ideas
and thoughts and to the real-world effect of the tentative problem
solution.

Section 2.2.2 presents the basic structure of a formal lan-
guage. A summary of this highly detailed section is given In part V
of the section. A formal language L contains a category Core(L)
of types and sorts (kinds of things), basically consisting of formal
objects, arrows and relations, together with function symbols

543



544 Goodman and Nguyen

(constituting Ar(Core (L))) representlng:Cat(L) , category-function
concepts: Foun(L) , set theory concepts such as exponentiation, mem-
bership, equivalence, set abstractions Loc(L) , logical connectors,
including negations, conjunctions, disjunctions and implications:
and Quan(L) , quantifiers, including universal, existential and
possibly various partial quantifications. In addition, L contains
Th syn(L) , a theory of syntax establishing the relations between the

functior symbols acting upon the deduction category Var(L) of all

basic variables of Z Thus, Var(L) consists of objects which
will later be interpreted as generalized or fuzzy sets or universes
of discourse under semantic evaluations, arrows, which pJay the role
of functions among the objects, and relations. Next, I contains
Wfex(L) , the class of well-formed (according to Th syn(L)) expres-

sions of L - essentially compound relations or well-formed formulas
Wff(L) and compound terms Wft(L) . Also, Z contains the total,
free, and bound individual variable maps TV(L) , FV(L) , BnV(L)
where (well-formed) individual variables are the same as projection
arrows denoted as a class, Wfv(t) , a subclass of Wft(L) . Those
maps count the free individual variables vs the bound ones in any
given expression. Finally, L contains some theory ThK(L) , in

addition to the basic syntax. As presented in parts of the text -
but not necessarily so everywhere - ThK(L) is chosen as an entire

or fragment of an, intultionistic theory, encompassing logical,
quantitative and set theoretic aspects. Basic theorems or deducts,
elements of De(Thk(L)) , are given in subsection (VI).

Section 2.3.2 concerns semantic evaluations 11 I of a formal
language L within a deduction category (c,%) . Basically, we
:estrict ourselves to the case where I I : L -6 (C,%) is a model
for Th syn(L) and if possible also for Th(L) , if (C,%) has

additional structure, such as that of a topos. In these cases, the
semantic evaluations, i.e., the ranges of 11 11 in (C,%) are com-
patible with the structure of L , i.e., a 'e isomorphic-alike.

In section 2.3.3, semantic evaluations are specialized further
to Loc(L) U Quan(t) , each class of evaluations, determining a par-
ticular logic L . A number of basic definitions iS given here
concerning the properties of semantic evaluations 1 11 , theories
Th() , logics L , and related concepts may possess. These include:
logical implication, validity, satisfiability, tautology, contradic-
tior, tautologic equivalence, truth functionality, truth functional
completeness, consistency, inconsistency, deductive soundness and
completeness, logical soundness and completeness, model consistency,
axiomatizability and compactness. Subsection 2.3.3(b) establishes
the very important result - Theorem 1 (rephrased, due originally
to Coste):

(a) Var(L) is a natural deduction category (indeed the canonical

one) for evaluating L with model 1 "'ar(l) : L -4 Var(L)

(b) Any model 11 11 : L - (C,1) (where (c,%) may have additional
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structure up to a topos) may be decomposed into a composition of a

map from Var(L) to (C,s) with 1 1l7ar(L)

(c) Consequently ThK(Z) (with Thsyn (L)) is a sound and complete

theory. By identifying any category e , or more generally any
category with additional properties up to a topos, with the deduc-
tion category (C,Sub) , Theorem 1 can be reformulated for ordinary
categories or topoi, etc., (Theorem 2). 2.3.3(c) consists of a
brief survey of various particular logics, including Lukasiewicz of
all orders (including classical logic), Bochvarian, Gddel-
Intuitionistic (compatible with ThK(L) here), all truth-functional

logics, and the non-truth functional Probability Logic.

Set theory concepts are discussed in section 2.3.4, beginning
with a selected collection of set theories, including Naive Set
Theory, Zermelo-Fraenkel, Maydole-Hay, Intuitionistic, Novak's and
Weidner's theories. Some emphasis at the end of 2.3.4 is placed
upon the Comprehension/Abstraction Principle in forming generalized
sets corresponding to wff's, andin particular, in defining general
set operations. Maydole's results concerning the consistency of
Lukasiewicz m1 -logic and Maydole-Hay set theory - with a modified

form of the Comprehension Principle included as an axiom - are
pointed out as a positive step in the establishment of a global
generalized set theory. In any case, in 2.3.5, general logical
systems, are introduced, in which it Is hoped that in some "logical
sense", at least consistency may hold. These logical systeris are
treated from a general deduction category approach. Connections
with knowledge-based systems are discussed. A model
It 1i L -* (GOG,Sub), where GOG is a union of Goguen's category of
fuzzy sets , Gog(H) , with appended logical operators, Is chosen as
the formal definition of a general logical system. In practice,
GOG could be replaced simply by a single category Gog(H) and a
single collection of logical operators. In conjunction with general
logical systems, the class of generalized or fuzzy subsets of a
space, and, correspondingly the class of dispersions on a space, are

introduced. Essentially each object variable i in Var(L) , is
evaluated as lill = (Xil,eI) 6 Ob(Gog(H)) , i.e., 9 1: X I -* H , H a

fixed Heyting algebra (truth space), XI  an ordinary set, with

i = Ai identified as the generalized set and 9= 1 A as its

dispprsion or membership function relative to XI  The evaluations

under II II of logical connectors Into , "& I "or" in Loc() are
denoted Ulnti = nt ' Il& = Pa ,loril = or I if the logic is truth

functional. Various set operations (for generalized sets here) are
defined, including products, unions, intersections complements,
relating to the results in 2.3.4. In addition set relations, set
abstractions of wffs , and power class and subset relations among

generalized sets are evaluated. Thus the wff 1= (x() eI y (n

where x , y are in Wfv(L) and (e : Ob(L) -# Rel(L)) is
the distinguished function symbol representing generalized set

membership relation, I an object in Var(L) , can be evaluated as
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I .2 where, letting 0
m I x a i x J,

1j1 = (XJea ) ,

uit = (Xiei) 1

ill{ (I11 1 I(1),T 1) , 1MIl - (H.T) (
1X (1) () X(1 )  = (lill (1=,) (H.T) ) = (f I f e H f S ap

if mll = Ilii x Ii ill x UHill = (Yme m

Ym = x x 11 n i it (1) x Yj

9m  01 .) A Ti(..) A . )

= Aij) A (.. .)

l(I)" -M ,i ' projection,

fly m (a l  : .YM + CZ ll(l) , projection,

11 1 1 G 11 <1 (x M l , fym(al )1>]

( l (i)II l 11 ( ), 1 >)

( ( ) If ..)
= ( (. ( 1 xx

M
= (, ( ),) ,

= li m

then we can find k , an object in Var(L), such that

It kl = (XI , € ) ; ( = "ly(f52 )"

m Y

Similarly, the wff representing a union is

1P 1 o r 2

(h )> o (I) z( )>m W m

<X C 1 or < ,i ,, l "mi
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<X ( ) 46u z Z ))> (formal)4 I m m

where

xE i> , etc.
2 m m

Then

11P11 = IIlit lorI ii? 2il

( (ix (1) 1) , (.ix(I)11))
or ( ()2 m

mz

= (Qi )~ m

y

with similar results holding for intersection, complementation and
other generalized set operations. Hence a calculus of generalized
set operations and relations can be established.

Furthermore, wff's need not be restricted to only membership
relations (again see 2.2.2), but because of the Comprehension/
Abstraction Principle, can w.l.o.g. be considered to b in that
form.

Section 2.3.6 presents an extensive survey of various families
of operators 4nt ' representing (through semantic evaluations)

negation, 0& , representing conjunction, and or representing

disjunction. & is usually called a t-norm and Oor a t-conorm.

A number of important properties are presented for various sub-
classes of such operators, including Archimedean, DeMorgan,
distributive, semi-distributive, copulas and co-copulas, Frank's
family, Yager's family and others. Sklar's Theorem, canonical forms
and ordinal sums, as well, are discubsed.

The problem of extending ordinary functions whose domains are
ordinary sets to those whose domains are generalized sets is dis-
cussed In 2.3.7. Basically, two approaches are considered: If
f : X - Y Is an ordinary function, A Is a generalized subset of
X , A 4E (X) , 2(X) C U(X) ! 9(X) , then two approaches to extending
f to f : f(U(X)) -# f(U(Y)) are considered for any C E U(X)
A E (U(X)) ,

Approach (I): 40f(A)(C) - 11<C e ?(A)>tl
-l

Approach (II): 4 f(A)(C) = II<f (C) E A>I1

(the second approach being compatible with uncertainty mea-
sures). Applications to Lhe extension of classical logical
(Boolean) connectors are also presented. Additionally, semantic
evaluations, including compound operators, intensifications,
conditioning, projections and interactions, Bayes' theorem,
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quantifications, and transformations of dispersions and linguistic
variables are all considered in section 2.3.8. Especially new is
the approach to conditioning (and hence :--tification), which
generalizes Zadeh's fuzzy cardinallty approach in a natural way.

Section 2.3.9 (A) treats in some detail Probability Logic (PL)
(briefly considered in 2.3.3(C)). Included is an analysis of
Hailperin's approach to PL and a discussion of his extension of
Fr6chet's bounds on Joint probabilities. Section 2.3.9 (B) extends
PL to the more general Lebesgue-Stleltjes Logic (LSL), where essen-
tially, probability measures are replaced by differences of such,
corresponding to their distribution functions being replaced by the
less restrictive class of functions of bounded variation with ranges
in the unit interval. An extensive appendix on functions of bounded

variation in R9 is added at the end of 2.3.9 (B) for convenience
of reference.

Section 2.4 presents a category and topos theory viewpoint of
generalized set theory. The basic categories Gog(H) (proposed by
Goguen) and Fuz(H) (proposed by Eytan), forming pseudotopol, and
extending Zadeh's fuzzy set theory, are discussed and compared. In
addition.the Intuitionistic modification FuzX(H) of Fuz(H) and
Higg's topos Higg(H) are also analyzed. Relations between those
categories are estabished and the controversy over which candidate
category, or suitable modification, is most appropriate for p-e-
senting a theory of generalized sets is detailed. Tie-ins with
models of Zermelo-Fraenkel set theory are also briefly considered in
section 2.4.2 (G), Three appendices are given at the end of 2.4.2
covering basic category and topos definitions, deduction categories
and formal topos properties, including a natural realization of
ThK(Z) within a deduction category or topos, and the B6nabou and

other constructions of standardized deduction categories and formal
topoi. The latter extend In a natural sense arbitrary deduction
categories and formal topoi and provide a general basis for es-
tablishing generalized or fuzzy sets, GOG being a particular case.

Section 2.5 briefly presents Zadeh's approximate reasoning and
fuzzy logic as a legitimate logic, with an associated deduction
system compatible with the semantic evaluations present.

Finally, Chapter 2 concludes with section 2.6, where a number
of different natural language sentences are translated into formal
language, and in turn, semantically evaluated.

In Chapter 3, a basis is established for investigating uncer-
tainty measures - i.e., dispersions whose domains of definitions are
collections of subsets of given spaces. A brief survey of basic
information theory concepts is presented in 3.1. Choquet-type
measures, Including plausibility, belief and doubt measures - all
generalizing ordinary probability measures are Introduced In 3.2.
Following the establishment of preliminary relations, characteri-
zations are obtained for doubt, belief and plausibility measures in
terms of alternating signed sums (Theorem 1). Further characteri-
zations relating to coverage (subset and superset) and incidence
functions of random subsets of finite (or complementary-finite)
spaces are presented in Theorems 2 - 4.

Section 3.3 considers possibility and related uncertainty
measures and, to some extent, conditional possibility measures. In
addition, basic relations between various classes of possibility and
other uncertainty measures are shown.

Chapter 4 provides an introduction to random set theory. The
natural topologies, o-algebras and coverage and incidence functions
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associated with (non-finite, in general) random sets are presented

In section 4.2. (An appendix treating this from a projection view-
point is given at the back of 4.2.) Theorem 1 establishes the
construction of random sets from primitive ones. Theorem 2 re-
phrases Dempster's result justifying the alternative names "upper"
and "lower" probability measures for plausibility and belief mea-
sures, respectively, in terms of non-precisely known (up to set
values) transformations of probabilities. Theorem 3 establishes for
general spaces, doubt measures as coverage fuiictions of certain
regular random sets (or subsets) and plausibility measures as Inci-
dence functions for certain regular random sets. Similar results
are also established for belief and disbelief measures. Theorem 4
presents the natural imbedding of a random variable as a random set,
compatible with the results of the previous theorems. The converse
of Theorem 3 is presented in Theorem 5: Given any random subset of
a space, its subset coverage function is a doubt measure, its super-
set coverage function is a belief measure, its incidence function is
a plausibility measure, etc. Theorem 6 treats approximations to
arbitrary functional transforms of random sets. Joint random sets
and set operations on random sets are also considered. General
results involving Choquet's theorem on capacities are presented in
4.3. Multi-valued mappings and Bochner integrals relative to random
sets are considered briefly in section 4.4.

Chapter 5 treats random sets and dispersions. In 5.1, zero-
one stochastic processes are analyzed and related to random sets
(Theorem 1) and to doubt measures (Theorem 2) and, in particular, to
semi-distributive t-norms and t-conorms (Corollary 1). The one-
point coverage problem is treated in 5.2, where the basic nested
canonical random set Su(A) and the maximal entropy random set

T(A) are considered, among others. Flou classes, level sets and
nested random sets are connected in Theorems 3 and 4, extending
previous work in [184]. Additional properties are obtained in sub-
section, 5.2 (C) Involving Isomorphic-like relations, based on one
point random set coverages between operators on generalized sets and
corresponding ones on random sets. Some emphasis is given to the
Su-type of random sets. (See also Chapter 6.) A general solution

to the one point random set coverage problem for the finite case is
presented (with some geometrical flavor) in Theorem 5. One point
coverage functions generated by random Intevals are considered in
subsection 5.2 (E), culminating in Theorems 6 and 7. Theorem 8
connects random variables, generalized sets and random sets. This
results in the relationship, for any generalized subset A of space
X and x e X ,

Il(x c A)II = Poss(x e A)

= Pr(x e S(A))

= Pr(V(A) e x)

where S(A) is some appropriate random subset of X and V(A) is
some random variable, where x is considered a compound set.

Theorem 9 of section 5.3 treats the multiple point random set
coverage problem for finite spaces. Also, in section 5.3 (Proposi-
tions I and 2) relations are established between Zadeh's possibility
measure and random sets by a direct use of Matheron's techniques
(171]. Higg's category (topos) and multiple point coverage func-
tions are also considered to some extent. In 5.4, the problem of
determining extremal - entropy random sets, one point coverage -
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equivalent to given generalized sets is presented. Tie-ins with
Robbins' earlier results concerning expected volumes or lengths of
random sets are also pointed out. The fundamental maximal entropy
theorem for discrete spaces is reviewed. Theorem 10 presents the
(otherwise, unconstrained) maximal entropy solution to the one point
coverage problem, while Theorem 11 considers the problem with an
expected cardinality constraint. Theorem 12 treats the minimal
entropy problem for one point coverages by random sets, followed by
some simple examples and counterexamples. In section 5.5, inspired
by the independent work of Hooper ([118]), randomized tests of clas-
sical statistical hypotheses, confidence region procedures and the
one point coverage problems in section 5.4 are related.

Chapter 6 concerns general problems arising in the isomorphic-
like (or "weak" homomorphic) relations between operators on random
sets and those on generalized sets. Following an extensive develop-
ment of mappings relating generalized sets to one point coverage-
equivalent random sets, called choice function families, Theorem 1
presents conditions when arbitrary combinations of cartesian sum and
product (or union and intersection, essentially, equivalently) oper-
ations have isomorphic-like counterparts in both general set systems
and random set ones. Theorem 2 determines which general set opera-
tions are weak homomorphic to given set operations on random sets.
Specialization to compositional ordinary set operations is also
carried out in Corollary 1.

The converse problem is also discussed: Given any generalized
set operations, which ordinary set operations on random sets are
weak homomorphic? Some examples are shown where generalized set
operations admit no natural corresponding (weak homomorphic) random
set operations. Theorem 3 addresses the problem of constructing
weak homomorphisms between generalized and random set operations
which depend as little as possible on a particular choice flinction
family. Theorem 4 represents weak homomorphic representations of
fuzzy partitionings, with an application to weighted sum operators
(Corollary).

Chapter 7 presents theories of uncertainty. Some connections
between various logical (and other) systems involving information/
knowledge flow is given in Figure 1 in section 7.1. Manes' very
encompassing "fuzzy theories" is treated in some detail in 7.2 and
related to general logical systems and functional extensions or
lifting operators. Watanabe's fuzzy set theory Is analyzed in 7.3.
Gaines' uncertainty logic, an attempt at simultaneously generalizing
both probability logic and Lukasiewicz logic, identified with fuzzy
sets, is presented and critiqued in 7.4. Finally, in section 7.5,
Schefe's "agreement probability" approach is reviewed. (This
approach mimics to a certain degree ordinary probabilities.) In
addition some of the controversies Involving fuzzy set modeling are
discussed.

In Chapter 8, inference procedures are developed for use in
knowledge-based systems. Knowledge representation in general is
discussed briefly in 8.1. Section 8.2 presents the outline of a
general decision theory based on dispersions, replacing classical
probabilistic notions. In section 8.3, a brief description is given
of established approaches to the combination of evidence problem.
This includes the following: classical Bayes' theorem, belief and
related (Dempster-Shafer) uncertainty measures, and certainty
factors. An alternative theory, applying the spirit of section 8.2,
is presented In a general setting. Two short results (Theorems 1
and 2) are used as guidelines In the development of the approach, an
application of which is given in Chapter 9. Section 8.4 presents
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some asymptotic results connected with generalized decision theory.
iThe first result (8.4 (1)) is an analogue of the classical Law of

Large Numbers, involving t-norm and t-conorm operators in place of
the (classical) product and sum operations. The next result (8.4
(2)), in effect, is a continuous extension of the first to an un-
countable number of arguments for the t-conorm operator. In 8.4(3),
a few miscellaneous approaches are presented for estimating unknown
dispersions. (See also 8.5 and Chapter 9.) In 8.4 (4) additional
asymptotic properties of t-conorm, t-norm forms arising when "fuzzy"
data is averaged are obtained (Theorems 1, 2). Asymptotic proper-
ties for combination of evidence forms, when information granularity
approaches zero is given in Theorem 4 and Corollary 1, Theorem 3
being a "guideline" theorem in the sense of Theorems 1 and 2 of 8.3.
More specifically, under relatively mild analytic conditions and
appropriate segregation of data and Inference rules into "analytic"
and "subjective" groups, the limiting posterior dispersion of the
unknown parameter vector is a computable transform of an integral -
which can be interpreted as a classical probabilistic expectation.

Chapter 9 consists of an application of the approach developed
in Chapter 8 for general knowledge-based systems to the specific
problem of data association in multiple target tracking. The gen-
eral problem and background information are given in part (A). The
concept of error tables, as conditional dispersions, is presented in
(B) with tie-ins to one point coverages of random sets and random
variables (see also Chapter 5). In part (C), inference rules based
on matching tables are analyzed and related, where appropriate, to
classical statistical tests of hypotheses and decision procedures.
In part (D) further problems Involving modeling of error tables and
inference rules are presented. In part (E), the actual combination
of evidence is carried out, in the form of a posterior dispersion
describing the unknown parameter a - in this case the true level
of association for any given pair of track histories. Interpreta-
tions and further uses of this output are also presented, including
approaches to obtaining a final figure-of-merit description of 9
representing in a general sense the posterior expectation of 9
Finally, in part (F), Corollary 1 of section 8.4 (4) is applied to
the situation considered here to obtain asymptotic forms for the
posterior dispersions of 9

Chapter 10 concludes the text with a subsection (10.1) devoted
to summaring the basic results of the text (as presented above). In
10.2 (A), a survey of controversies and criticisms is presented,
detailing particularly 10.2 (A)(II), Watanabe's criticism of Zadeh
and his alternative theory. In 10.2 (A)(III), Lindley's approach to
defining admissibility of uncertainty measures is given together
with a number of responses to his claims that only probability
measures, up to suitable transforms, are admissible. Finally, 10.2
(B) deals with the various research problems and open questions that
have occurred throughout the text. At the back of section 10 is
added an appendix on the modeling and semantic evaluation of natural
language Information.
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10.2 U.resolved issues

A. Criticisms, controversies involved In generalized set theory and
probabillty theory.

(I). General comments

Despite apparent success in applying fuzzy set theory to di-
verse disciplines - Including medical and fault diagnoses, pattern
recognition, clustering techniques, and various social/psychological
areas (see again, Dubois and Prade [51] for a full survey) as well
as several military applications (see, e.g., Dockery [49] and Watson
et al., [269]), much controversy has raged between those advocating
use of fuzzy set theory, probability theory and other approaches to
the modeling of uncertainties. See Stallings [247], [248] vs. Jamn
[122]; Tribus [253], [254] vs. Kandel [129] and Zadeh [284]; Zadeh's
criticism of the Dempster-Shafer theory [282], Johnson and Shore's
claim [126] that maximal entropy and other standard statistical
techniques supersede fuzzy set modeling. In addition, concerning
the use of fuzzy logic and approximate reasoning, Haack [102], Tong
and Efstathiou [251], Schefe [224], and Watanabe [267], (268] have
all been quite critical; Fox 160], on the other hand supports its
use. (See also chapter 7 for several proposed theories of uncer-
tainties.)

Let us consider some of these criticisms and suggestions of
alternative theories in some more detail.

Haack's criticism is basically directed to Zadeh's second order
fuzzy logic [280], [289], where fuzzy set membership functions, in
effect, have ranges of values (i.e., "truth" values) which them-
selves are fuzzy sets, as opposed to Zadeh's first order logic,
where ordinary numerical values or more generally lattice-values are
employed for the membership functions. (It is the latter approach
we take throughout most of this text, not the second order ap-
proach.) Haack's main points bf contention include: lack of
closure, lack of use of formal inference rules and no soundness-
completeness properties. But the latter are missing in most
multiple-valued logics anyway - not just Zadeh's approach. (See
section 2.3.3 or Rescher's comments on general multi-valued logic
systems [214], pp. 161-166.) (By soundness of a logical system, we
mean that any predicate (or relation or formula) which is deducible
from the system's axiom set by use of its inference mechanisms, is
also truth-table-wise, or tautologiqally, verifi~hle. By complete-
ness of a logical system we mean that any predicate which is
tautologically true or verifiable is also deducible from the axiom
set of the system.) Other desirable properties of logical systems
include compactness, decidability, and consistency. (See section
2.3.3 for discussions of these concepts for classical logic, where,
e.g. , for first order predicate calculus, soundness, completeness
compactness, and consistency all hold. Again see Rescher for the
problem in multi-valued logics [214], pp. 62-66 of the failure in
general of such logics to have all possible operators reducible to a
primitive set of operators - as Is the case In classical lcgic.)
Again, It should be reiterated that Zadeh's fuzzy set system 10 is

relatable directly to Lukasiewicz R 1- logic. See, e.g., Giles [70

- 73] where also a subjective probability approach (see also section
8.5) involving betting is established for fuzzy set membership and
operator modeling, although it should be noted that Lukasiewicz
Logic does not handle fuzzy quantifications such as "some", "many",
etc. (See P.g. Zadeh (283].) Flnally we note Gottwald's work on
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S Lukasiewicz Logic [94J, [95].
However, if enough mathematical structure is present in the

form of a topos (see also section 2.4), then by use of an appro-
priate formal language (see, e.g., Johnstone [127], pp. 152 - 64, or
see sections 2.2 and 2.3 here) , a theory based on a variation
of intuitionism, may be developed, with corresponding axioms and
deduction rules, which is sound and compl ._a. In particular, the
important topos Higg (H) which includes Zadeh's system 50 . i.e.,
Fuz(H) as a subcategory,has such a propety. (See again section
2.4.)

In addition, Haack complains of undue formalism in Zadeh's
treatment of vagueness and artificial precision (in the form of the
numerical valued membership functions) - but of course Haack tacitly
accepts an analagous precision for probability functions or distri-
butions in probability theory - which we have seen is a special case
of general (fuzzy) set theory. She also indicates confusion by
Zadeh in the interpretation of linguistic quantifiers. Fox offers
reconciliation of classical logiq and Zadeh's second order logic by
suggesting use of "truth-prominance" priorities (borrowed from
production rule techniques in artificial intelligence theory) in
place of fuzzy truths.

Tong and Efstathiou argue that fuzzy truth values, such as "it
Is very truth that", do not need to be formalized relative to the
truth of sentences. They also agree, in effect, with Haack's cri-
ticism of lack of closure properties for fuzzy truths with respect
to fuzzy set operations. In addition, they claim Zadeh's linguistic
approximation procedure results in cumbersome forms that are not
very useful.

In Figure I, section 2.1, a summary of knowledge flow from
conception to evaluation is presented. This text has emphasized
natural language, formal language, general logical systems and
knowledge-based systems (the latter mainly in Chapters 8 and 9) in
treating combination of evidence problems arlsing from real-world
situations (see especially Chapter 9). However, relatively little
attention was paid to the upper left side box in Figure I: cog-
nition. Some of the controversial work of Cohen [38] and Kahneman
and Tversky [128] has been cited, as indeed was the linguistic-
cognitive compendium of Winograd [274']. See also Anderson [4'] for
a general psychological approach to cognition. Another area, that
of "prototype theory", bears some comments. Originally, [40'] pro-
totype theory, as based on Zadeh's fuzzy set theory (for other
approaches see the listed references In [198']) was typified by the
definition of a "concept" or perhaps better, "extension of a
concept": A norcept A is dentifled an the four-tuple A =
(X,d,x o, p) , where X Is some crdinary set (universe of discourse),
d :X x X -# R is a metric, x e X Is the "prototype" and

4PA :X - [0,1] is the membership function of A , so that for any
x. y E X, if d(x,x.) I d(y,x0 ) , then 9A(x) & a(y).

Thus, in errect, this forces fuzzy (or generalized) subset
of X and x° E X to be such that 0 A is unimodal and norm-lized
(I.e., 0A(xO) - 1) at x°0 . Psychological research in this area
looks promising in spite or the rather weak mathematical efforts.
In fact, the gulf between psychological and mathematical analysis of
cognition is no more apparent than in the above-referenced paper
[198'], where Mssrs. Osherson and Smith purport to show Zadeh's
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fuzzy set theory as employed in prototype theory leads to contra-
dictions. but classical set theory doesn't. As one example of this,
consider their "incompatibility with concept combination" via con-
junction: They believe that if X = all fruit, A, = all apples,

A2 = all striped fruit and A3 = A 1 A 2 , x0  or an x close to

x0 through d (as illustrated in their paper) is the prototypical

striped apple, then in effect

lnn(A 1 (Xo), 4A2(xO)) OA 3 (xo ) > A (xo )

violating the obvious condition *A (X) & PAl(x) , all x E X , by

supposed intuition!!
Similar gross misunderstandings of basic mathematical relations

take place in their second "incompatibility with truth conditions of
inclusion", given by the interpretation of the sentence "All grizzly
bears are inhabitants of North America" Rs:

For all x a X , (OA(X) & 4B(x))

where X is the class of all animals, A is the fuzzy subset of
all bears and B that of all inhabitants of North America. Obvi-
ously, this interpretation is too strong when they obtain the
"fallacy" for x = Sam , a squirrel living on Mars,

(A(Sam) > PB(Sam) !

As a quantification, this could be treated as

'Pa ((A(X),(PB(X))),
X' X

or through Zadeh's fuzzy cardinality approach

4al(xZ 0&((A(X),fPB(X))/ Z OB(X)),
xEfX Ke X

or even better through the general conditioning approach outlined in
2.3.8 (C) and (F).

On the other hand, the recent paper of Cohen and Murphy [40']
extends the idea of "concept" in natural language to a "knowledge
representation model", in the sense of Al knowledge representation
through a schematic display of the various subordinate roles a con-
cept possesses. In turn, this leads to a reasonable approach to
quantifications and combinations of concepts (in their sense). How-
ever, they accept the fallacies of [198'] and indeed attempt naively
to avoid, as much as possible, both classical set theory and Zadeh's
set theory in a formal sense. Oden and Lopes [196"], independently
using fuzzy set theory (and fuzzy logic), developed a more detailed
and rigorous approach to modeling concepts, but still retained
psychological aspects of cognition. Their approach-in contradis-
tinction to the "similarity-to-ideal" or "to-Instances" approaches,
compatible with [198'] - apply Zadeh's original ideas of fuzzy pro-
positions, as espoused originaly in [290'] and continued, e.g., in
[286]. See also Niedenthal and Cantor [194'] for further discus-
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sions. See Kempton (136'] for interview techniques for modeling
category prototypes.

(II) Watanabe's criticism

Watanabes criticism and proposed modification of fuzzy set
theory [267] also bear some additional analysis. (See also section
7.3.)

On the positive side, he establishes two interesting related
mappings connecting fuzzy sets and their operations with ordinary
sets and their operations In a nonprobabilistic setting:

For any (ordinary) set X , define

Q(X) (A I A e I(X) & 0 s *A( c) < 1/2 , for all x e X}

where as usual T(X) is the class of all fuzzy subsets of X while
?(X) 9 5(X) is the class of all ordinary subsets of X . Then de-
fine the mapping p : V(X) x 0(X) -* I(X) , where for any C E *(X)
and B 6 d(X) , p(C,B) 4 T(X) , where for all x e X

d x

Op(C,B)(X) = (c(x) + (-1) B(x)

Then,

(1) p is bijective (1-1 , onto) with inverse p-1 given by, for
any A e v(X) , p 1 (A) 9 (9(A) , w(A)) , where A = p(e(A) , w(A))
as above and for the given A , the core 9(A) e 9(X) and frill
w(A) e 0(X) are given for all x e X :

x a 9(A) iff 1 k (A(X) z 1/2

x 4 9(A) Iff 1/2 > 1A(X) k 0

9P(A)(x) 1 1 PA(X) - ,(,)(x) I

The core map 9 I (X) -# I(X) is of course surjective, but infi-
nitely many-to-1.

(1i) Let k2, k3 : (X) x 9(X) -# C(X)

and kI : I(X) -* 0(X) , all be arbitary but fixed.

Then define the fuzzy set operatAons for complement, inter-
section and union as follows

k1 : I(X) - 1(X) ,

where for any A 4 I(X) ,

Ck1(A) 9 p(C(O(A)) , k1 (A))

n k 2, Uk3 y (X) x 1(X) (X)2



.556 Goodman and Nguyen

where for any A,B e %(X)

A nk2B p(9(A) n G(B) , k2 (A,B))

A U kB p(G(A) U 9(B) , k3 (A,B))

Then it follows uumediately that for all A , B e V(X)

G(A) = 0 iff sup GA(X) < 1/2
XE X

*(Ck (A)) = C(G(A)) ;

e (A nk2B) = O(A) A G(B)

G(A Uk B) = G(A) U 9(B)

and hence 9 Is also a homomorphism w.r.t. (Cic k 2U ) and1k 'n2 'U3

(C,n,u) , 3-tc.

(iii) We can extend Watanabe's results further. Consider first any
binary fuzzy set operation @ I (X) x I(X) -+ I(X) which extends
some ordinary set operation * , i.e.,

wr (@ . ,(X) x ,(X))u * @

wherb

* : (X) x 9(X) 1 (X)

may be arbitrary (but fixed). Define function * by

t(u) a r0 iff 0 & u < 1/2
11Iff 1/2 1 u S 1.

Suppose also @ Is in composition form i.e. there is a

g : [0,1] 2  [ (0,1] with g(0,1) 2 {0.1) such that for all
A,B 4 9(X) , and x G X,

A @ B (x) = g(A(x}  @(x))

Then it follows readily that 9 is a homomorphism with respect
to a defined through g Iff for all u,v e [0,1]

g(su, tv) = sg(uv)

iff for all u,v e [0,1] ,

g(u,v) = g(tu, *v) + (-1 )g(*u ' tV)'h(uv)

where 0 & h (u,v) < 1/2 is arbitrary

n particular, for n = , g must satisfy the boundary con-
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di tion

g(OO) - g(O,1) = g(1,0) = 0 ; g(ll) = 1

Thus for a to be a homomorphism for @ defined through g and
for n , we must have:

1 I g (u,v) Z 1/2 for all 1 X u,v 2 1/2 , 0 S g(u,v) < 1/2 for
all 0 A u,v & 1 , otherwise.

Hence, g - min as shown in the paper will do, but g = prod
will not, since for example prod(1/2,1/2) = 1/4 < 1/2

Similarly for * U , g must satisfy g(0,O) = 0 , g(0,1) =

g(1,O) g(l,1) 1 , implyjng for a to be a homomorphism for
and U , we must have for ku) through g : 0 S g(u,v) < 1/2 for all
0 : u,v < 1/2 ; 1 Z g(u,v) k 1/2 for all 0 & u,v & 1 , otherwise.
Hence g = max will work but g - probsum will not since, for
example, probsum(3/8, 3/8) = 39/64 > 1/2

Next if & : T(X) . T(X) is a unary operator, extending
V :(X) * 5(X) which corresponds to & : [0,1] [0,1] , with

g : (0,1) - (0,1) , then for all A e 9(X) , x e X

A (x) =g((A(X))

Then as above, e is a homomorphism w.r.t. G and * , iff,
for all u E [0,1] ,

g(%u) = *g(u)

iff

g(u) = g($u) + (-1 )g($uth(u) , 0 < h(u) < 1/2 arbitrz.ry.

Hence for -= C , g must satisfy g(0) 1 , g(1) = 0
whence for 9 to be a homomorphism for and C , we must have for

through g :

0 & g(u) < 1/2 , for 1 2 u Z 1/2

1/2 S g(u) S 1 , for 1/2 > u Z 0

yelding many choices for 0 including that for g(u) = I - u

On the critical side, Wantanabe joins Schefe (see section 7.5)
in the desire to preserve all of the basic laws of Classical Logic,
especially the Law of the Excluded Middle, and criticizes the fuzzy
set membership concept as involving over-preclfications and adds
(with Manes [170]) the lack of empirical ways of verifying fuzzi-
ness. (See also Chapter 7 for various theories of uncertainty.)

Arbib [6] has raised the issue of the lack of well-organized
texts in fuzzy set theory, while Manes [168], (170], questions (1)
the validity of fuzzy set theory as a legitimate branch of mathe-
matics, by pointing up the lack of analogues with the Central Limit
Theorem and Law of Large Numbers of probability theory as well
as the apparent arbitrariness and (2) inconsistencies occurring
in "fuzzifying" or extending ordinary set concepts such as the
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"extension principle" - the fuzzy set extensions of ordinary func-
tional transforms operating on ordinary set or points. (See also
section 7.2.)

(III) Admissibility of uncertainty measures [91'].

Recall that an uncertainty measure can be considered as a map-
ping 7 : A - I° , where (X,A) is a measurable space, i.e.,

A V 9(X) is a a-algebra and I 0 R is a closed interval. A

number of relations were developed between various classes of uncer-
tainty measures in Chapters 3, 4 and 5, but no specific comparisons
were established showing one class of uncertainty measures was
"better" than another. Indeed the theme has been: each situation
dictates a perhaps different appropriate uncertainty measure.
However, Lindley (158] generalizing Savage's earlicr work [221'],
pointed out that by using additive scores, uncertainty measures can
be considered as decision functions relative to event sequences.
Consequently it Is meaningful to consider the class of Bayes uncer-
tainty measures, etc., among the many items one can investigate
within a statistical decision theory framework.

Lindley concluded that only uncertainty measures that are
certain transforms of probability measures are admissible and large
classes of nonstandard ones, i.e., upper and lower probabilities,
confidence statements, and possibilities, are all inadmissible.
Because of these rather strong conclusions and the informality of
Lindley's argument, a more detailed decision-theoretic presentation
is given here together with some clarifications and modifications of
the original conclusions.

(I) Uncertainty measures can be considered as decision functions
relative to the following framework:

Let : H 0 9 {0,1) , H1 9 [0,13 Let (X,A), (Y,%), (Z,C) be

measurable spaces, i.e., A 9 V(X), % V 9(Y), C 9 9(Z) are

a-algebras, 2.(A) (C j a G A and e is at most countable) ,

p : Y - 2J.,A) , q : Z -+ AA  arbitrary known, fixed maps, repre-

senting choice maps.

A is the collection of basic events on X

X x 2(A) = parameter space,

= (((g(B))Bee'g) I C E J.(A) , g E A A } data space,

M d [a,b] ( a < b fixed real constants) = decision space,
COE (A)

* : X x Y -4 is the parameter map, where for all w e X
7Y,

O(w,17) 9 (wP(1)) ,
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V : a. Z is the data map, where for all 0 d (uC) e 12

all v a Z

V(9)( ) d ( q )( ) ' , ( ) ,

EBEC

51 is the decision function space, so that any r e ,
d A

and any y = ((g(B)%eelg) e C , C 1,(A) , g e A A

r(y) d (rB(g(B)))Bee , where for all B e 9 ,

7B(g(B)) d uncertainty of eveiit B occurring, given g(B) is

observed to occur.

Each such r : -. 9 is a conditional uncertainty measure map,
Aand we use the notation, for any g e A , (rig) : 1,(A) - • , where

for any C e 1 (A)

(rig)(9) - (rB(g(B)))Bee *

Also define the score function class

(0) X a {fir : [a,b] x H0 - R+ satisfies regularity condition

(1))

f is continuously differentiable in its first- argument
with f(x,t) nonincreasing in x , for all t 6 H0
x : x t ,f I for some x t ,f I for some xt,f

(1) Cf(xt,f t)/Oxtf = 0 ,

and f(x,t) nondecreasing in x , for all x X xtf •

and + - > Mf max sup f(x,t)
teH 0 xe[a,b]

a < x0,f < xl,f < b

Define for each f C X , loss function

Lf : I × a -. R+

where, for any 6' G 1(A) and h e [a,b) , and any

B = (w,C") e a , we have the additive form

f +- , if C' ; C"

Lf(ha) d Z f(h(B),4B(6)) , iff r' e"
BeC'

where A -& (0,1) is the ordinary membership function map, i.e.,
for any B 4 A
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(PB(X) 1 i ft x eB
to Iff x 4 B

Assume all maps 0, V, r, Lf are measurable in the usual sense

for the appropriate measurable spaces.

In turn, the usual decision theory definitions apply here
including conditional risks, posterior risks and Bayes decision
functions with the above interpretations.

Define also for each f e , the class of all '-admissible
uncertainty measures

-di d r e and for each y (g(B))Be
' -amssf = {ry= ,gB) E

there is no Tl e q such that eq.(2) holds)

(2) Lf(r,(y),G) - Lf(T(y),G) , all 9 e n with strict inequality

holding for at least some 9 4 n.

Define also the class of all locally admissible uncertainty
measures as

loc-admis f (r I r e G and there is no

y =((g(B)) Begg) e I such that eq.(3) holdb)

(3) (total differential) (duLf(ue))u-T(y)S 0 ; all a e 1

with strict inequality holding for at least some 9 e n

Equivalently,

7z fcf(x.)B( W))1
(31) BE .I TB S 0

see J~r B(g(B))

for all e = (w,g) e 1 , with strict inequality holding for at least
some 9

Similarly, for each y a Y , define

loc-admiss fy 4 (r I r E g and eq.(3) does not hold).

Next, define the Lindley-transform

P: X (surjective)

where

{QIQ : [al,b'] - (0,1] is continous, nondecreasing
and such that Q(a') = 0 , Q(b*) = 1)

a S a' < b" : b
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and for any f e X , and all xo, f & x S x 1 , f , define

(4) Pf (x) f(xO)/fx) (f(x,1)x)

In turn, define for each f e X , Lindley's class of uncertain-
ty measures as

Lind {r e g and there Is a probability measure u

making (X,A,P) a probability space such
that eq.(5) holds)

(5) Pf(rB(g(B))) = v (B I g(B))

I.' (Bng(B))/v(g(B))

Afor P(g(B)) > 0 , for all B E A , g e A i.e.,

Pf(TB(F)) = v(B I F) ; for all B,F 4 A

(II) It follows that for all f e X

(6) I-admissf : loc-admissf - n loc-admissf,y
YIE

9 2 1 n z2 n z3
- Lindf

where

(7) 09 y1 I y (g(B)) ;i 4 E

g() C, if B F, all C. F 4 A .0, if B #F '

(8) 'j2 { y I y = (g(B)) Be

g(1) {C If B - F, C F all C, F e AlF if B A F, C F4

1 __ fy I y = (g(B))B, E

G if B -F, F n H
g(B) F n G, If B =H all B, F, H, G e A),

0, if B #F, F n H,H

(10) :1 n loc-admissf,y

- {r I r 4 1 and for all F, C e A
if C 0 0 T c (C) = x 1 f , Tcc(C) = X 0 f
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rF(C) a [X 0 ,f , X,f])

(11) 22 21 n loc-admissf,y = {r I r e g and for all F, C G A
yE

Pf( F(C)) + Pf(TcF(C)) = 1)

(12) x3 4 loc-admissf = {r r e g and for all F, G, H e A
yIE9jfy

Pf(TFnH (G)) Pf(TF(G)) Pf(rH(FnG)))

(III) Now let

(13) X 0 2 {f I f e X is such that in eq. (1) "nonincreasing" and

"onclreasing" are replaced byUstrictly decreasing"
and "strictly increasing", respectively).

Then it follows that for all f e X0 :
Pf : [Xo,fXf] -. [0,1] is continuous and "strictly increas-

ing", and for any t e H1 I

inf(f(x,1). t + f(x,0) (1-t))xe[x°0fx 1"f] @

occurs uniquely at x = xt, f , where by differentiating w.r.f. x

(14) pf(xt,f) = t

i.e.,

(14') x t,f  (t) ,for all t e H 1

(IV) Now for any f e H , any probability measure p such that
(X x Y x Z , o(A x % x C), p) is a probability space such that
marginal probability measures p. and pyxZ are independent, for

any r e g and for any y 4 (YB)Be A (TB(g(B)), g) the pos-

terior risk is

(15) rf(J.T Y)

E(Lf(T (V(e(- ,..))( . ), (,..)) j v(e(.,.. ))(.. ) y)

B f(YB} Pyxz (p C) x q-(g))

where

(16) Kf(YB)
E(f( B (g(B)) , 0 B ("))j(q(..)(B}) , q .. )) y yB )
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= f(rB(g(B)),l).Mx(g(B) n B) + f(rB(g(B)),O) px(g(B) -4 B)

= VX (g(B)).(f(rB(g(B),l).px(Bjg(B))+f(rB(g(B)),O),
• (1- x (Big(B))) ) -

Then applying the results in (III) to eqs. (15) and (16),
!nf rf(pTY) occurs uniquely for the Bayes uncertaiaty measures
TEG

r M rO'f)g , where

(17) Pf(rTP'f) (g(B))) = px(Big(B))

A
for all B 4 A , g 4 A

Conversely, if equation (17) holds for some r( ' f ) , then
r(0,f) is a (unique) Bayes uncertainty measure for the posterior
risk. Since all uniquely determined Bayes decision functions are
I-admissible, combining these results with eq.(6) yields

(18) Bayesf = I-admisf = loc-admissf = Lindf ,

for all f E X0 , with the form of the Bayes decision functions

given above in eq. (17).

Remark 1.

Lindley shows that a number of well-known classes of uncertain-
ty measures-Including one-sided confidence intervals, significance
statements, Zadeh's possibility measures and upper and lower pro-
bability measures - are not §-admissible. This is accomplished,
noting eq. (6), for any such candidate uncertainty measure r , that
rELindf I i.e.,

P f (r . ( -. . ) ) 0 x . . . ;

for all probability measures vux  over X relative to A , and all

f e X (or f E X0 ). This is equivalent to showing either (or both)

eqs. (19) and (20) do not hold:

(19) Pf(rF(C)) + Pf(TCF(C)) 1 , all C, F C A

and/or

(20) Pf(r FnH(G)) = Pf(TF(G)) Pf(rH(FnG)) , for all F, G, H .

However, Lindley does not cu,, ider fexcept for his "proper"
case of f constrained so that Pf(x) a x) the valality of tne

class of all r e G such that r (..) itself is a (conditional)

probability measure family.

Indeed, the answer in general is negative:
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Theorem

under the same basic assumptions as in part (I), where now

x0 ~0:

if T g Is such that r.(--) Is a non-atomic conditional

probability measure family, I.e. there is a non-atomic probability

measure v making (X,A,L') a probability space, such that

(21) rFC zi(FIC) , all C, F 6 A

with u(C) 0 . then:

(i) Unless r is constrained so that

(22) Pf(x) = x , for all x e H,

such as for Savage's choice [221),

2
(23) f(x,t) =(x-t) ,all x e [a,b), r 4H

then r is not

(Ii) When t is chosen so that eq. k;2) holds, then r is
N~-admissible.

Proof: The proof involves a basic technique in functional equa-
tions. Since r.(.. ) Is non-atomic, eqs. (19) and (20) become

(24) P f(x) + P f(1-X) =1 , all x e [0,1]

(25) P f(w-z) = P f(w) Pf(z) , all w,z e[,]

Differentiating eq. (25) first w.r.t. w and then w.r.t. z
Yields. for all w,z e [0,1] the primes denoting derivatives,

z P4 (W-z) = Pl(w) PfZ

w Pfo(W-2) = Pf(w) Pf(z)

whence

z d log p f(z)/dz aw -d log P f(w)/dw

Implying

z *d log P f(z)/dz =const, ;all z [,1

which) 1714ius the solution
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Pf(z) = z ; all z e [0,1]

for any fixed k > 0

However, use of eq. (25) immediately implies that k = 1

Corollary 1

Under the same basic assumptions: If r is I-admissible and
is such that it can continuously assume all values in [0,1] , then
P(r (.-)) is an atomic probability nonsure family and hence not

'-admissIble, unless eq. (22) holds. Similarly, in general, all

iterates PJ(r(..)) , for j = 1,2,... , are not I-admissible.

Remark 2.

The above result may be weakened as follows; If T is com-
plementary, i.e. satisfies eq. (19) and continuously assumes all
values in H I , then if r is I-admissible , eq. (24) must hold,

i.e.,

(26) f'(x,1) f'(1-x,1) = f'(x,0) f'(1-xO)

for all x e [0,1].

Thus, e.g.,

(27) f(x,t) 4 t-'Ix-tlkI + ( 2-t)xk2

for all x e (0,1], with k lk 2 > I , kI 2  constants, will not

satisfy (26), and consequently r connot be I-admissible for that
choice of f

Remark 3.

All uncertainty measures can be extended-in the sense to be
described below - to probability measures over higher order spaces,
which in turn are all I-admissible relative to f chosen as in eq.
(23):

Let(a,%,Pr) be a fixed non-atomic probability space and
U : a -* H1 , a uniformly distributed random variable. Let (X,A)

be - measurable space, i.e., A 9 9(X) , is a a-algebra on X , and
in turn, (A,B) be a measurable space.

For each A e A , define the filter class

(28) C A- ,

and let
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(29) C d (CA A A) 9 ()3 ,

forming the measurable space ( , €)

Define also the class of uncertainty measures on A

(30) A (A) - T A -. H1 is a random variabe, I.e.. r is

(. BI ) - measurable)

and the class of all probability measures on C

(31) 1r(c) v{u ( , €, u) is a probability space)

Consider also the following mappings:

(32) S : A(A) - %a

where for all r E A(A) , S(7) : L - s where for all w e a

(33) S(r) (w) -T-[U(w), ]
= (B I B G A and T(B) e [U(w), 1])

= (B B e A and U(w) I r(B))

= (B B 4 A and w e U - (0, r(B)])

(34) h : A(A) o mr(2) is injectIve,

where for all r e A(A)
(35) h(r) d Pro(Sq7))-i

noting that for all A e A

(36) (S(") (CA) = (w w c a and A e S(r)(w))

= {)j w ea and U(w) < Y(A))

U-1[ 0,r(A)] e ,

(1, C, re(S(r)) - 1 ) is the induced probability space under S(r)

and hence

-1
Pro(S(r)) 4 9r(C)

The above resalt directly implies

(37) h(r) (CA) = 9roU [0,r(A)]

r(A) all A e A g
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Also define

(38) k : lr(C) -# A(A)

surjective, where for all P e 9r(C) , k(u) -(e.)

Note the surjectivity of k holds since: For any

1 4 A(A) , h(r) e ,

and

(40) k(h(T)) = h(r)(.) r(.)

Note also that for any element i G C , writing it symbolically

as

(41) V = comb(C,n,U) (.-CA..)

and any r G A(A) , extending eq. (36)

(42) (S(r))V- (W) = comb(c,n,u)(-.(S(r)'(CA)..

= comb(C,n,u)(..U- [0,r(A)]..)

= U-1 (comb(C,n,u)(..[0,T(A)]..)) ,

because inverse functions preserve all ordinary set operations, and

which naw can be Conveniently computed. In tu.rn Pro(S(r))- (V)

can be obtained as ProU- (comb(C,U,A)(..[O,r(A)].)) from eq. (42).
Thus h(7) can be obtained essentially in a natural constructive
sense over C

(1) In summary,noting the mapping

(41) C, : A -o (CA A 9 A ) S C , is bijective and hence Injective

in C : h in eq. (34) is injective: eqs. (37) and (42) all imply
W

that in a natural way A(A) is imbedded within pro(c) (Indeed,

this development is essentially equivalent to the representation of
dispersions through one point coverage functions of nested random
sets as developed in Chapters 4-6.)

(ii) Also, referring to the notation in part (I), replacing A
there by C , etc., then for all f such as in eq. (23), so that

eq. (22) holds, it follows from Theorem 1 that all probability
measures u * 9r(.) are I-admissiblef (making the obvious iden-

tifications as need, e.g. in eq. (21)).

Hence, results (i) and (ii) Imply in the above sense that all
r A(A) are I-admissiblef !
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B. Research issued

The development of generalized set theory - as opposed to
Zadeh's fuzzy set theory and classical probability - is truly a
brand new area. The applications to natural language modeling may
enable feasible use in a systematic manner for information that was
previously ignored to be fully integrated with statistical descrip-
tions of unknown parameters, including data association, search
parameters, and fault diagnosis levels, The basic combination of
evidence algorithms presented in Chapters 8 and 9 in their present
form have the capability of treating both literal and numerical
information. This should be tested against simulated real-world
situations. All of these developments rest on the theoretical bases
established previously. The research issues to be presented conse-
quently, must have an impact on the design of these algorithms.
Choice of the most appropriate general logical system is another
very important factor, as is resolution of random set representation
ambiguity for modeling input information. Modeling of natural
language forms is of course also critical. Thus, all of the
research issues really drive the design of the algorithms in a true
symbiotic relationship.

In this section, we pose a number of basic questions (with not
enough answers at present!) for issues that arise concerning the
role of natural language information, semantic evaluation of formal
language, general Aog0C31 systems, and other concepts in the model-
ing of uncertainty. Unfortunately, a number of basic problems
remain concerning the foundation and implementation of the combi-
nation of evidence problem, discussed in Chapters 8 and 9. Even
more basic than this are open problems involving the representation
of natural language information, semantic evaluations, and a number
of other important issues.

Issue #1 Combination of evidence (Chapters 8 and 9).

Primary on the list is that of the problem of combining evi-
dence. Although some results have been obtained in the direction of
generalizing the classical probability form of the Weak Law of Large
Numbers to generalized set theory (section 8.4), more satisfactory
upper bounds on convergence or firming-up rates must be obtained.
The new idea of extending a t-conorm to an uncountable number of
arguments, analagous to the role integration plays with averaged
summations, should prove useful-as developed in section 8.4. In a
related manner, suppose there are n probability or fuzzy set
descriptions - noting that in the context of generalized set theory,
unlike Zadeh's original development, all probability functions and
their operators can be shown to be special cases of the general
system:

(A1 (nP X [0"I

for common unknown parameters 0 d X , which also may contain some
nuisance subparameters. In the basic combination of evidence algo-
rithm, (see Chapters 8 and 9) 9 may be identified with the pair
(Z,Q) , where Z , the dummy data parameter may be later projected
out and where Q represents the prior data association level
between two given track histories. Clearly, for any choice of
confidence levels al .. a , the region
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n

R n(A 1 ... ,A An; a 1 .... an) n A -([ca 1]) r. X

j=1 j

threpresents in a natural way the joint (a1,..an) level set in

describing a Thus, any additional piece of evidence as given
e.g., by

A n: X # [0,1]n+l1

results in clearly

R n+1(A1 .... An+l ;a, .... an+l) 9 Rn(A 1;all.... an )

Thus in an inclusion set-sense, Rn(A1...,An;ai .... an) is decreasing

in n , for n = 1, 2, However, this decrease is not necessarily
to a single point (0) as would be desirable and occur under rea-
sonable asymptotic conditions within a pure probabilistic setting -
i.e. classical consistency would hold. Indeed, the above sets are,
in general, not compact, so the convergence is not necessarily to a
simple set. What is sought is a single generalized set A(n ) of X

and some combining confidence level function gn

n
gn : [0,1] .4 [0,1] for each n , such that

R (A, ,A-1
Rn (A1 .... n ;aI..., an) r A(n)1 ([gn(al...an),l])

and the expression on the right-hand side of the above equation
decreases in a set-Inclusion-sense for all n sufficiently large,
although not necessarily to only 0 - Also, numerical upper bounds
on these expressions and rates of decrease are desirable. Previous
results were obtained only when 9n was given in nondecreasing

form(2O).Here we wish to derive gn under no restrictons, if pos-

sible. (See also section 8.4 and Chapter 9 ,F) for related results
concerning the asymptotic behavior of combination of evidence esti-
mation as information granularity decreases.)

That the combination of evidence problem-even for classical
statistical modeling - in expert rule-based systems is still an open
issue, can be affirmed by the many discussions and ad hoc results.
Finally, it should be remarked that the random set one point cov-
erage representations mentioned earlier could play a useful role in
approaching this problem by transferring known properties of com-
bining random sets to the fuzzy set images.
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Issue #2. One point coverage functions of random sets
and equivalent dispersions (Chapters 5 and 6).

Another issue of importance is the resolution of the ambigu 4ty
of the one-point coverage representation of dispersions, or equi-
valently, generalized sets by random sets - and analogously, of the
compound set evaluation representation of generalized sels by random
variables. Some progress has been made on this problem in the case
of finitely discrete spaces, by making use of entropy as a measure
of ordering the representative random sets. (See section 5.4.) It
is known that the minimal entropy set must lie in the vertex set of
a space which is bijective to the clPss of all, representing random
subsets to the given fuzzy set. However, further characterizations
are not known at present. On the other hand, it is easily shown
that the maximal entropy solution is given by the choice of the ran-
dom set T(A) , for given fuzzy set A , where the ordinary random
membership function for T(A) corresponds to a mutually statis-
tically independent zero-one process, with one-values corresponding
to the values of the dispersion *A " (See section 5.4.)

The extension of the probl .m to a more general setting for t' 
base space is of course desirable, This also must entail - as has
been carried out for the previous special case - characterizations
of the entire solution class of random bet representations for each
fuzzy set. Other measures of the ordering of uncertainty should
also be considered, such as generalized variances, volume coverages,
and variations of classical information measures.

Issue #3. Random variable representations of dispersions
(Chapter 6).

It has been shown (as briefly mentioned above in #2) that not
only do all generalized sets have random set representations, but
also possess, in a canonically corresponding way to each such random
set representation, random variable representations, where: given e
base space X and fuzzy subset A with membership function

OA : X # [0,"i , a random set representation S (in general; S is

not unique, since for example Su(A) = e- ([U,I]) or T(A) as

described briefly in item #2, may be chosen, among many others
[77]), S Q X , holds with

(PA(x) = Pr(x c )

In addition, a space of elementary events, say, Y , exists and a
random variable V (in general not unique, but determined through
S) exists over Y such that all points x in X may be considered
also as compound events from Y , i.e., subsets of Y , such that

Pr(V e x) - PA(x) ; all x e X .

Analogous to the isomorphic-like or weak-homomorphis relation-
ships developed in this book between fuzzy set oo,rations and random
set operations, similar relationships are sought for random variable
representations.
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Issue #4. Multiple point coverage renresentations

The problem of multiple point coverage function representation
by random sets also remains an open problem. In the extreme cases
where all possible subsets and incidences foi random sets are
specified, a number Qf results have been obtained by exploiting the
Choquet capacity tneorem and its variations. Also tie-ins with the
Dempster-Shafer theory of uncertainty have been established as part
of this work. (See e-pecially, Chapters 4 and 5.) In addition, the
other extreme casL .7-' also been investigated with many fruitful
results: namely, the one point coverage case described in the above
items. However, little progress, except for t.ie work ii. discrete
spaces characterizing all random set representations, has been car-
ried out for the following n-point coverage problem:

Let n(X) denote the class of all ordinaiy subsets of space

X which have at .- t n elements (distinct). Let

f ; 7n(X) - [0,l3

be a given function. (WhL.n n = 1, this is the same as a fuzzy set
membership function.) Then conditions aje sought for f and a
random subset S of X is soughtsuch that

f(C) = Pr(C T S) ; all C e In(X)

This problem entails many more difficulties than the one point
coverage problem, since in general it can be shown that unless f
is suitably restricted, no solution exists for the above -equation
for S

Issue #5. Extension of category and topos theory formulations of
generalized set theory and relations with general loqical
systems (section 2.4).

Recall the extensive discussion in section 2.4.2 (F) con-
cerning the relations between Goguen's category, Gog , Eytan's
original category Fuz and modified category (and indeed in some
cases, topos) Fuz , and Higg's topos Higg

(1) Is Higg the smallest topos containing Fuz , whose subobject
classifier is H , the natural complete Heyting algebra general-
ization of the unit interval [0,1]?

(2) What functors can be established imbedding the extensions or
• .r!ttons of -hem into Higg? It should be mentioned that Eytan
attempted a second time (unpublished personal communications (57))
to show that Fuz suitably enlargened was a topos. (However, see
the construction of Fuz in section 2.4.2.)

(3) Can we extend Fuz and Higg to reflect the generalized (fuzzy)
set theory established here? (This is in place of Zadeh's system.)
Of course, since the mutual distributivity property will fail in
general for the "and" and "or" operations, we may no longer have
classical categories, but a good deal of structure remains. For
example, Manes proposed a generalization of Fuz which is not
compatible with generalized set syste,s. Yet, we can show the
following extension of Manes' ideas: (See also section 7.2.)
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Define function T : SET - SET , where SET is the topos of
all well-formed sets. The object class is indeed all sets, while
the arrow class is all ordinary functions between all (ordinary)
sets. Let (Pnot' I&' 0or) be a fixed general logical system,

where the first operator is realized as a negation, the second as a
t-norm, and the third as a t-conorm. Then for any set X , define

T(X) 9 the class of all generalized subsets of X .

For any fucntion f : X -# Y (thus in Ar(X,Y)) , define

S(f) : T(X) -* T(Y) , where for any A E T(X) , ((f))(A) 9 f(A)

where for any y e Y , the evaluation of f(A) e T(Y) is given by

Of(A)(y ) = Uty a f(A))11

= II((3x)((x e A) & (f(x) = y )))II

- or ( A(x))

[xef- (y))3

It then follows immediately from the above form that for any f e YX

yand any g e Z that

T(gof) s (g)*Ttf) and I (identx) = ident ,

which in turn implies that T is a functor from SET back into
itself (properly)!

Thus, we pose the following basic problem:
Extend the definition of T and investigate all possible

relevant properties of IT and relate this to Manes' "fuzzy
theories".

Issue #6. Extensions of classical estimation, hypotheses testinQ
and other decision porcedures (Chapter 8).

Dubois and Prade ([51], pp. 255-264) have devoted a section of
their compendium on fuzzy set theory to the modeling of fuzzy set
membership functions. A number of basic approaches are considered,
with some emphasis on the empirical aspects of the modeling. In
this vein, it should be added that the weak homomorphic theory
developed for example in Chapters 4 - 6 shows that the idea of
carputing the degree to which a fixed value possesses a given attri-bute
may be interpreted as the evaluation of the ziumber of times ( fixed
vaiue possesses a given attribute),which in turn is interpreted as
the evaluation of the corresponding fuzzy set membership function
(see also section 8.5), as is typically done by survey sampling of
individuals. This may be identified with the empirical one point
coverage probability function generated by a random sample of random
sets that are identically distributed and are one point coverage
equivalent to the attribute or generalized set in question. How-
ever, the following issue has not been sufficiently emphasized: In
classical statistical techniques, modeling of distribution functions
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is often carried out in two basic steps. First, a parametrized fam-
ily of distributions is chosen. This may be done using invariance,
shape, use of Central Limit Theory, or via trends of earlier empir-
ical evidence. The family is chosen so that it reasonably contains
the viable alternatives for the true distribution and its size is
adjusted accordingly. Then empirical data or restrictions are
imposed - such as unbiaseaness, sufficiency, minimal risk with
respect to some choice of loss function on errors and estimates of
the unknown parameter value - yielding either a unique value or a
reduced set of values where the unknown parameter lies. This argu-
ment leads to the conclusion that the same procedure should be
applied to more general approaches to uncertainty modeling, where
dispersions, replacing the classical probabilistic ones, play a key
role in the theory. Examples of this are fuzzy set theory, with its
fuzzy set membership functions, flou set theory with its index
functions relative to the individual sets forming a given flou set,
and topological neighborhood theory with its neighborhood filters.
(See Manes' unified treatment of these theories as described in
section 7.2.)

Other analogues can be established between generalized set
theory as applied to parameter estimation and classical statistical
estimation theory (see Chapter 8). For example, one can assume a
linear regression model is valid connecting observations with an
unknown parameter vector, with no specification of the relevant
distributions involved - at least, at first. Then least squares, or
more generally, a least weighted functional defined on the potential
errors between observations and possible values of the parameter in
question, is derived, yielding a reasonable value of the unknown
parameter as a function of the observations, i.e., a statistic, if
dstributional assumptions were to be made. Then if a fuzzy set
modeling approach is taken, the observations could be assumed to be
generated from corresponding generalized set membership functions,
yielding in turn through the standard extension of an ordinary func-
tion (see section 2.3.7) the generalized set membership function of
the "statistic". In turn, this leads in a natural way to confidence
sets for the unknown parameter vector, by, for example, considering
the level sets associated with the aforementioned membership
function. (See sections 8.2 and 8.3 for a related technique.)
Asymptotic properties of these (general set) estimators may also be
obtained as the sample sizes are increased. (See section 8.4.)
Bayesian techniques may also be developed involving conditional
distributions in the generalized set sense. (See sections 2.3.8 and
8.2 for development of these concepts for generalized sets.)

Can we develop a comprehensive decision theory directly extend-
ing classical probability and statistical theory, by utilizing both
numerical and linguistic data sources through generalized set
theory? The beginnings of such a theory, where independence, con-
ditioning, Bayesian forms, loss functions, Invariance techniques,
etc., are given in Chapter 8. In addition, as mentioned previously,
an extension -f the Weak Law of Large Numbers, involving both dis-
crete and a continuous infinity of operator arguments, has been
carried out. This impinges directly upon the combination of evi-
dence problem (item #1) and is illustrated by the algorithm
development given in Chapter 9. As mentioned before, the entire
approach to generalizing classical set theory and probability theory
uses the Principle of Abstraction: evaluation of the concept
through formal expression in classical logic relations, followed by
choice of a particular logical :ystem. The interpretation is often
carried out through an isomorphism between truth evaluation and
logical operators and the membership or dispersion interpretation of
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atomic predicates (x e A) . (A simple example of this was given in
issue #5 for the truth evaluation of f(A) .) This approach stands
in contradistinction to the many brute force "fuzzifying" procedures
available.

Finally, can figures-of-merit representing the central ten-
dancy, variances, etc., be developed for generalized sets?

In conjunction with the issues raised above, we pose two re-
lated questions:

(a) What specific logical system should be chosen for a particular
problem? As mentioned, a combination of theoretical and empirical
guidelines seems the most appropriate approach. The theoretical
part stems from the weak homomorphic relat!cns between t-lasses of
fuzzy set systems - such as the semi-distributive or copula systems
- and random set systems and their operators. The empirical may be
based upon the many studies of Zimmermann [291], e.g., but then
suitably combined with necessary parameterizations.

(b) Similar remarks hold for the modeling of generalized set mem-
bership functions.

Both problems, to a certain extent, imitate the situation in
classical statistical modeling: How do we choose the appropriate
dispersions and what independence/dependence assumptions should we
make? Do we use invariance or loss function theory as a guideline?
In the case of natural language modeling, in general, more emphasis
must be placed upon subjectively obtained data and cognitive pro-
cesses.

Issue #7. Formal language representation of natural language
information and related problems (section 2.2).

Inference rules constitute the heart of any combination of
evidence algorithm. Thus the faithful modeling of natural language
descriptions is a key concern. This entails the ability to handle
not only simple declarative sentences but other modal forms, com-
plicated predicates, tenses, clausal forms, multiple argument
predicate-relations, and quantifications which may be crisp or
fuzzy.

Systematic symbolization of natural language is a much sought
after goal. Some progress in this is shown in the appendix at the
end of this section and the examples of section 2.6. (See also the
numerous references mentioned throughout section 2.)

Consider first the following questions:
Can we express all human ideas or concepts in terms of natural

language? Can these ideas be reduced to primitives and operators
involving them? Can a mathematical/logical procedure be developed
for describing and analyzing natural language in a unified way, in-
cluding attributes and operators? What quantitative relationships
can be established between prelinguistic ideas and natural language?
How sensitive or robust - and how subjective - are concepts trans-
lated into natural language with respect to the particular language
chosen (the Whorf-Sapir hypothesis is involved), the individual, and
the medium used? Is there always inherent ambiguity in modeling a
given concept in natural language? Can we make use of the enormous
body of literature available which treats formal linguistics and
semantics to develop a systematic unified framework directly rela-
table to multivalued logic theory? In a related manner, we may ask 0
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if a unified approach to uncertainty models (A la Manes - see
Chapter 7 for further details on Manes' proposed answer to Zadeh's
fuzzy set theory as well as theories (and criticisms) of Gaines,
Schefe, Watanabe and others), and to natural language would be
possible? Can the efficiency of the various approaches to modeling
uncertainty be meaningfully compared?

In a more specific direction, it is clear that we must continue
the development of a taxonomy of language forms relative to symbol-
izations as illustrated in the text. Thus, modal and temporal forms
should be treated by a combination of 4not ' '& - or , generalized

set system operators. These act upon time and other variables in
the form of both indices and elements of generalized sets. Compound
relations may be best treated as formally n-ary generalized set
relations. These new results replace Zadeh's weil known fuzzy
cardinality approach. They are based upon first principles - only,
the generalized system chosen ,and the resulting conditioning of
predicates - rather than upon summation of membership functions with
respect to their arguments.

Much interest has appeared (personal communications) for this
new approach. In any case, a comprehensive procedure must be deve-
loped for systematic symbolization, extending Zadeh's previous work.

Finally, we ask:
Can we use formal linguistic/semantic metrics for determining

accuracy of symbolizations? For example, see the well-established
techniques of Osgood, et al., [198]. Standard analysis of variance
techniques properly applied or factor analysis as used In psycho-
metrics, and specialized isolation of concept techniques such as
Nowakowska's E195') can be pooled. Or, tree-diagramming and parsing
techniques and checks could be useful in comparing variations in
symbolizations due to inherent ambiguity of forms in language or the
necessary nonuniqueness in extending classical two-valued logic to
infinitely-based logic via the Principle of Abstraction. (See
(172].) As Chomsky has been often paraphrased: the efficacy of a
linguistic theory is its test against actual (I andomly" chosen)
linguistic situations.

Issue #8. Semantic evaluations, logics, soundness, completeness,
consistency (sections 2.3, 2.4).

The problem of choosing the most appropriate logic as the
vehicle for modeling natural language information has been mentioned
already in #6. Do we choose a truth functional system or a proba-
bilistic-like one, such as Lebesgue-Stieltjes logic (2.3.9)? Truth
functional systems are easier to work with but may not reflect
empirical conditions. In conjunction with this, we may pose the
following: can any non-truth functional system be in some way
approximated by a truth functional one? Can a logic be chusen
together with a corresponding general set theory which is sound and
complete, or at least consistent, in possibly some "local" sense?
(See the various discussions throughout Chapter 2.)

Issue #9. Knowledge-based systems

There is a clear-cut need for a more comprehensive design of
knowledge-based systems as developed here. As presented in this
text, such systems are only informally organized as a feedback-loop
between a panel of experts and the chosen general logical system(s).
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In addition, there is always room for improvement in how information
is extracted from experts. Improved questionnaire techniques and
psychometric procedures (some of which were mentioned in #7) can be
helpful. In short, what is needed is a specialization of the gen-
eral theory of systems - many lucid articles of which can be found
in the International Journal of General Systems (Great Britian) - to
knowledge-based systems as interpreted here. The recent text of
Hayes-Roth, et al. (107') provides an excellent overview of know-
ledge acquisition and architecture, as well a evaluations and
syntheses of knowledge-based (and expert) systems.

Issue #10. Miscellaneous comments on uncertainty modelinq

In classical statistical decision theory, for finite sample
sizes, non-zero lower bounds - of the Rao-Cramer-Fisher type [212] -
exist for the second moment matrix of parameter estimator errors
under sufficient regularity conditions. In conjunction with this,
at the quantum level, the well-known Heisenberg uncertainty prin-
ciple furnishes lower bounds on simultaneous variances of position
and momentum measurements. General dispersion analogues to the
above precision (or equivalently, entropy) bounds are sought.
However, as pointed out in issue #6, development of measures of
central tendency and higher order moment analogues for dispersions
remain to be fully developed, and so all subsidiary investigations,
including the above for precision bounds, must be held in abeyance.

In another direction, the role of idempotence and fixed point
theorems in uncertainty modeling should be pointed out. (We have
already considered idempotent t-norms and t-conorms in section
2.3.6°) Such mathematical tools have been well-developed in both
existence forms (such as generalizations of Schauder's fixed point
theorem for continuous functions over convex subsets of Banach
spaces) and construction forms (being essentially an elgenvector-
eigenvalue problem for unit eigenvalues).

In classical estimation, under reasonable conditions, it can be
shown directly that if X and Y are random vectors representing
an unknown (state) parameter vector and observed data, respectively,

L is an estimation loss function and the Bayes estimators R(Y) is
unique, etc., then the idemDotence relation

9(y)

holds.
For any feedback-loop system - such as a knowledge-based system

amenable to design changes via a panel of experts - we compare

Yt and ** _ 02 t ( y ( ,- , R _)
Yttt t t t t

where subscript t indicates present time, t , indicates predic-
ted to t , y indicates observed or potentially observable data,
x unknown parameter vector and R and S design matrices, which
include error covariance matrices, transition matrices, and measure-
ment matrices as components, In the case of Kalman filtering.

6
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If the system reaches a steady state level, i.e., yt and
t

approach a common constant value with R - , - , - all ap-
t t t

proaching constants as t - , then the relation becomes approx-
imately the following fixed point one:

y, = g(y"; QW)

where

Note also the widespread use of fixed point theorems in ob-
taining various properties about logics such as in Rescher (214],
Chapter III, where a modified form of the Axiom of Comprehension is
shown to be model consistent with a variation of logic L I On

the other hand, more constructive aspects of fixed point theory can
be utilized in the modeling and semantic evaluation of reflexive or
self-referencing sentences. Interestingly enough, as Bellmdn points
out in Chapter 9 of his book on Al [13'], such sentences are often
the sources of humor, such as the statement telling us to plan
ahead, which Itself is not well-planned relative to page spacing or
the one proclaiming that no one should use profane language, des-
cribed through the use of such language.

Consider the following examples of reflexive statements:

S I "This sentence is true."

S 2 = "This sentence is false."

S 3 "This sentence is q-true."

(q-true is some linguistic quantifier such as "mostly",
"approximately 3/4", etc.)

S4  "This sentence contains essentially gray colored

characters."

S5 "This sentence contains mostly roundish shaped letters."
S= "This sentence cannot be deduced within classical logic

and the theory of arithmetic."

If we apply the general principles developed within the text,
it follows that:

S 1  = <ttS 1 (1}>
[islll = ( (1)>

S 2  = <152 11 ({O)>

I=S21 = P(0) (11S211) ' (2)
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and more generally,

S 3  = <11S311 e q>
US3 = q(11S311) (3)

Clearly, 'f (1) represents the crisp set singleton 1, then a
natural solution for the semantic evaluation In eq. (1) is

US 1I: = 1

However, if (0) represents the crisp set singleton 0, eq. (2)

has no solution for 11S211 and leads to the famous "Liar's paradox".

But, if {0) Is replaced by a fuzzy number, i.e., 0{0) is a

monotone continuous decreasing function around 0 with 4(0}(0) = 1

and *{o}1 c) = 0 for some minimally chosen c , 0 < c : 1 , then

eq. (1) dces have (a fixed point) solution (as. is easily seen
graphically), which approaches 0 as c approaches 0

In general, eq. (3) will have at least one (if 'q is non-

trivial symmetric unimodal, normalized at some x0 6 (0,1) , then in
general, two) solution(s) for US3 it

On the other hand, S4 Is more difficult of evaluate, since

S4 = <color(S 4 ) E Gray>
UIS411 - (PGray( color (S4)) ,(4)

with 11S411 not appearing on the right hand side of eq. (4)

Similar remarks hold for S5  and the Gbdelian-like sentence

S 6  Satisfactory analysis of these forms analogous to the first

three examples is yet to be worked out.

0
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APPENDIX

P4odeling Natural Language and Semantic Evaluations

A good deal of this appendix is based upon the paper [91").

INTRODUCTION

A procedure for combining evidence based upon linguistic and
numerical/statistical sources is presented in Chapter 8. A more
specific application to tracking and target data association pro-
blems is given in Chapter 9. The center of these approaches
consists of Inference rules and error tables (and matching tables
used in the inference rules) modeled within a framework of multiple-
valued logic. It is clear that the widest possible scope in
modeling and evaluating natural language information must be sought
in order to be able to carry out efficient programs of combining
evidence. Natural language sentences are often complex in form.
For example, the following sentences could occur within a military
context:

S = In Ocean region V , and usually in Region W , if the
weather is poor and the sea state corresponds to rela-
tively high turbulance, then indications by sensor
system A that a submarine was in the area are not that
reliable and probably should be discounted in favor of
geolocation matching information obtained from sensor
system B , although exceptions to this can occur when
visibility is up to about two miles, in which case, it
has been shown that A-data matching should be assigned a
much higher degree of importance in its effect upon
correlation."

**

S "Contact with the ship was held for about two hours, but
was lost just before the Straights of Skagerrak were
sighted, although purple side-insignias may have been
spotted as well as an oval-shaped dome near the rear of
the ship, but a foggy condition prevaded the area pre-
venting any further identification."

Such examples as above illustrate the typical problems faced in
modeling and symbolizing natural language. This includes the inter-
pretation of modifiers such as "usually", "relatively high", "not
that reliable", modal and temporal operators such as "probably
should be", "was held for about two hours", and verb/predicative
relations such as "Contact with the ship", "was lost", "foggy

condition prevaded the area". (See [46'''], [46 iv ] for related
linguistic problems arising in expert systems.)

A systematic approach to the full symbolization of language is
thus most desirable. In this text, some modest efforts in this
direction are made. Conditional expressions, such as "most tall
ships in region 5 are enemy ones of type F" are considered. The
approach here is in contrast to Zadeh's rather arbitrary "fuzzy
cardinality" approach which cannot be directly derived from multi-
valued truth considerations [286], [289]. A comprehensive approach
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is taken to the modeling of temporal and modal relations, extending
earlier ideas of Zadeh's PRUF technique (286]. Some examples are
presented illustrating these ideas with an important application to
the combination of evidence procedure. A number of other modeling
procedures, in addition to those presented here, is given in section
2.6.

NATURAL LANGUAGE, FORMAL LANGUAGE, AND SEMANTIC EVALUATIONS

Too often in the past, natural language information was ne-
glected in favor of "more precise" numerical data. Or, such
information at times was arbitrarily made more precise to be in
numerical form. Since the onset of Chomsky and others, more rigo-
rous outlooks have been taken toward the understanding and modeling
of information content in language [1631, [47]. With the work of
Zadeh on PRUF [286] began a new era in the development of a calculus
for semantic evaluation of natural language. The following basic
premises are assumed:

(a) All natural language information is translatable into
sequences of English sentences. The problem of whether a given
natural language molds the speaker's thoughts due to its structure
and limitations - the Whorf-Sapir hypothesis, or whether th' is not
valid as Berlin and Kay claim (see [153] for comments) - will not be
dealt with here.

(b) Ambiguity or meaning is expressed by (subjectively)
welghting the possibility of interpretations. Thus, e.g., the
cxpresslon "I like her well." could be

S1 = "I really like her."

S2 = "I wish she remains well (in good health)."

S3 = "I want her to become well."

S4 = "I like the well that she owns."

Weight w1 , could be assigned to S I , i = ... 4 . Usually

context allows for resolution of these possible branches of meaning.
For simplicity, it will be assumed here no ambiguity is present.
(See [153] for further discussion. See also the related idea of
probabilistic grammars [249"] and Oden's fuzzy set approach [196],
(196'].)

((.) Any given sentence in actuality represents an equivalence
class of possibly differently appearing - i.e., syntactically
different - sentences, all having the same semantic evaluation, a
number lying in the unit interval (0,1] representing its truth
value. This is related to Chomsky's concepts of transformational
generative grammar, where changes in forms of sentences are due to
word order rearranged, use of synonyms, change of voice from active
to passive, or other superficialities (163], [47]

(d) Parsing Principle: Given any sentence (or any equivalence
class of sentences) there exists an analytic form or parsing which
is semantically the same but is structured within a formal language.
This is related to Chomsky's deep structure analysis 1163], [47).
(For further details on formal language and multivalued logic, see 6
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(214], (1721.) Attempts at establishing automatic procedures for
parsing natural language into a corresponding formal language form,
such as Schank's approach C223] are many and the area remains a
lively one for research. (See the large compendium of approaches in
[274' .)

A typical parsing analysis yields, for any given compound
sentence S

S = comb(...,not,&,or, if( ) , then.... )(SIS 2..... Sr) ()

where the operators "not", "&", "or", etc., all indicate the usual
unary or binary linguistic connectors and comb indicates some
sequential combination of these connectors with sentences
SlS 2 '.... Sr I the latter all having simpler forms than SI  does.

In turn, each Si also has a parsed form in terms of relatively

simpler sentences, etc.

(e) Modified Principle of Abstraction: Any sufficiently simple
sentence, such as the components SI in (1), has a unique

corre3ponding semantically equivalent form

(x E A) (2)

where A represents a generalized set, property, or attribute, x
is a possible vector of elements in the ordinary sense, and e is
the extended set membership relation for generalized sets. (See
2.2.) As in ordinary set relations, A is considered a subset of
an ordinary set X called the universe of discourse or base space
and in the ordinary sense, x is in X , i.e., x E X . It should
be noted that this apparently reasonable principle can lead to para-
doxes in formal logical systems, such as in classical naive set
theory or even in set theory based on multiple-valued logic, for a
wide variety of logics (except for Lukasiewicz-n1 Logic - see
section 2.3.3.). In the work here, these difficulties will be
ignored for the time being.

Thus, (1) and (2) yield for sentences S

S = comb( .... not,&,or .... )(x1 e Al, x2 e A2 ..... xr E Ar)

= (x e A) , (3)

where

x (xlx 2 '.. Xr) (4)

A comb'( .... C,x,t,*,...)(A 1,A2 ..... Ar) (5)

where comb' is some other combination function and C is the com-
plement operator on generalized sets, corresponding to "not", x is
the cartesian product operator corresponding to "&" , t is the car-
tesian sum operator corresponding to "or" , etc. (See also 2.3.8.)

(f) Principle of Semantic Evaluation: Any sentence S has a
truth value IISH , a number in 10,1] which can be evaluated
through the values of the semantic function 11.11 over component
parts of S , given the particular semantic function, or equiva-
lently, logic chosen (section 2.3).
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(i) If the semantic function is truth functional, then eq. (3)
is evaluated as

11S11 comb( .... nt'o&.oor,9* '....)(0A (X ) . . #Ar(xr))

= A (x) ,(6)

where

A I(XI) = liX Aill , i = 1,... r (7)

yielding in general the membership or possibility function

A: X i  [0,1] , and where

Ont = 1notl : [0,1] -* [0,1] (8)

is a nonincreasing function with Pnt(0) = 1 and 0nt(1) = 0 , the

classical truth table relations, and similarly,

a = 1& : (0,1] x [0,1] -4 [0,1] (9)

is a nondecreasing function usually assumed to be bounded above
pointwise by the function min, continuous, symm., associative - so
that it is unambiguously extendable recursively to any finite number
of arguments - and has the boundary truth table values 4 a(0,y) = 0 ,

&(1,y)= y , for all y in [0,1] . An analagous form holds for

or florig : [0,1] x [0,1] -* [0,1] , (10)

nondecreasing, etc., bounded below pointwise by max, and having
boundary truth table values Vor(0,y) = y, Por (1,y) = 1 , for all y

in [0,1]

The above functions are called negations (with often the added
property of being an involution), t-norms, and t-conorms, respec-
tively. (See section 2.3.6 for various properties of these
operators.)

(ii) If 1l-1 is not truth functional, then the evaluation in
eq. (6) does not hold and a more complicated evaluation procedure is
valid. One example of this is Probability Logic (section 2.3.9),
where, e.g.,

US I or S2It hi I 1i + S2 11 - 11S1  & $211

hnot Si = 1 - 1iS1i , (12)

but In general there is no fixed , not dependent on any parti-

cular S1 or S2 such that

1S I a S2 11 = *&(11S i '111S2 h) ,
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where SI,S 2,S are any sentences. (See [214] and section 2.3.3

for further discussions concerning truth functional vs. non-truth
functional evaluations.)

In addition, for a given set of natural language connectors,
more than one semantic evaluation function may be used throughout a
given sentence or in certian different sentences.

SOME LANGUAGE OPERATORS AND RELATIONS

In this section, some common (but by no means exhaustive)
language operators and relations are considered.

(a) Linaulstic/lx!ical connectors.

The basic connectors representing negation (not), conjunction
(&), disjunction (or), implication (if( ) then ( )) , have already
been introduced. The last could also be defined, as in the classi-
cal logic case, in terms of "not" and "or". More compound operators
such as "iff" may also be defined. Purely linguistic connectors
such as "although " and "but" can be defined entirely in terms of
the basic connectors also. For example, "although" may be iden-
tified with implication and "but" with conjunction, with some
possible modifications.

(b) Hedaes.

Hedges are intensifiers or modifiers operating on attributes.
If one lets "hedge" represent generically any hedge, such as
"extremely", "very", "little", "quite", then any choice of semantic
evaluation function 11.11 leads to the function 4hedge = 1hedgell :

(0,1] - [0,1] . Some controversy exists concerning how to generate
spectra of hedges from a neutral hedge, where exponentiation and
translation parameter families have been compared empirically as
candidates (150], [147], (167]. An alternative, and perhaps more
general, approach is to consider first the simple hedges
corresponding to integral iterations of conjunction. Thus, for any
positive integer j , and any sentence S = <x E A> ; x and A are
as before:

s(J) = "x has property A to the jth intensity"

= "x has property A (j ) '

= (x e A (j ) )  
(13)

In turn, assuming truth functionality here,

IIS(J)II = ( A(X) ..... PA(X)) -(14)

However, for the choice (P& = min, no change in semantic value for
th

the j intensity is reflected here! On the other hand, if 0& is

an Archimedean t-norm such as prod (i.e., ordinary product with
respect to its arguments) then it follows from the canonical repre-
sentation (see 2.3.6) that there exists a continuous monotone

decreasing function h : [0,1] R + with h(O) A +- and h(1) = 0
such that
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-1

&(x1....xr ) = h (min(h(x1 )+...+h(x r), h(O))) (15)

for all xI in [0,1] , i = 1 ,.,.,n , n arbitrary positive.

(Conversely, any choice of such an h generates an Archimedean (P

as in (15), where one need only take n = 2.) It follows immedi-
ately that (15) implies that j in eq. (14) may be replaced by any
positive real number so that (14) becomes

IIS(j)ll = h-1(min(J.h(PA(x)) , h(O))) (16)

Analagous forms may be obtained relative to D , and negation asor
well may be employed. In (16), when j > 1 , S(jo ) can be called

an intensification, where somewhat arbitrarily, one denotes
"very(S)" as S(Jo ), "very very(S)" as "very(very(j),' = s(2jo )

etc. When j1 < 1 , S(jJ )  similarly can be identified with

"little of (S)", etc. Some tie-ins between hedges and quantifiers
will be discussed in subsection (e).

(c) Modal operators. (See [245] for background.)

Alethic modality concerns itself with the spectrum - together
with negations - of indicativeness. Thus for example: "impossible,"
"improbable", "possible", "is", "likely", "probable", "certain" is
one such collection. Indeed, correspondences have been established
between a simple numerical scale of subjective confidences between
0 and 1 and such alethic forms for a number of applications
(personal observations). Using negation, the operators of necessity
and entailment, among others , may be defined [245]. Deontic modal-
ity concerns, analagously, the spectrum of permission or obligation.
Other modal families of operators may concern hope, desire, hate,
etc.

In any case, a reasonable way to generate such families or
spectra of modal operators is to choose some base or anchor within a
given family, denoted as modal0 , say: and simply ecfine

modal = hedge(modal0 ) (17)

where hedge is some suitably chosen modifier, as in subsection (z
depending of course on modal. Hence,

S - modal(x e A)
= (x * modal(A))
= (x a hedge(modalo(A))) , 18)

with semantic evaluation, assuming truth functionality,

11S1I = r-dal( PA(X))

m hedge( modal O (CA(X))) (19)
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(d) Temporal Operators. (See (215] for the related area of
temporal logics.)

Consider first the case for past time operetors and in parti-
cular the expression

S= 'y had property A" (20)

Suppose that A is a generalized subset of domain X = Y x R

where Y is some fixed population (an ordinary set) and R the
negative real with zero, represents the flow of time, with the
present being identified with t = 0 It is also supposed that

PA : X - [0,1] Is known. Thus for any t E R , the sentence

St = "y had property A at time t" (21)

has the semantic evaluation

iIStiI = cA(Yt) , (22)

for any E Y Next, identify "was" as a generalized subset of
R , so that

ws #wil as : R [0,1] (23)

is some monotonically de.reasing function with was(-o) = I and

#was (0) = 0 At this point it should be remarked that empirical

investigations have to be made to determine what the actual member-
ship functions involved in this modeling - and all previously
mentioned models - are numerically. Putting together eqs. (21) -
(23) yields the reasonable interpretation for eq. (20)

S= Or (St & <t E was>) , (24)[over all
t in R I

which under the usual trutn functionality assumptions yields

11S11 = or (&(P A(Y,t), was(t))) (25)

( over all)t in RI

Note also, that in practice, R will be replaced by a suitable
discretization, unL-ss cor = max is chosen. (The problem of

extending t-norms and t-conorms to a continuum of arguments is
discussed in section 8.4. A related result may also be found in
[91'''], section 5.) Similar analysis can be carried out for remote
past, future, future anterior, and many other temporal relations.

(e) Condltloning and quantification.

Zadeh's contributions to this area have already been mentioned
(286]. See also the discussion of other approaches in (51], pp.
138-140. The approach presented here is quite general and reduces
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to Zadeh's and others for particular evaluations. Let A be a
generalized subset of base space Y and B a generalized subset of
Y . Let quant stand for any quantification involving percentages
such as "some", "all", "few", many", "sometimes", "often", "most",
"about 3.4", "0.456", etc. Let pop be a fixed population of
individuals (an ordinary finite set) and suppose that measurement
functions f : pop -* X and g pop -+ Y are given so that for any
z in pop ,

(z 4E A) = "z has attribute A" = "f(z) has attribute A"

and

(z e B) = z has attribute B" "g(z) has attribute B". (26)

Furthermore, pop can be considered to be an element - in the ordin-
ary sense - of a super-universal set Pop , the collection of all
populations of possible interest. In turn, A and B may also be
considered generalized subsets of Pop , so that for any member of
Pop , such as pop , one can define in a reasonable way membership
of pop in A and in B as

(pop G A) = Or ((z e A) & (z e wt))(over all)
X6popi

and

(pop G A) = Or (z e B) & (z e wt)) , (27)

[over 
allZ G pop I

where wt is some generalized subset of pop representing weighting
of importance of each individual for either attribute A or B (as-
suming here for simplicity that wt is the same for both attributes).
If equally likely weighting is desired, Jwt l/card(pop) . Thus,

under the usual truth functionality assumptions, it follows that

PA(pop) = 11(pop e A)11 =or ( &( A(f(z)), owt(z))) (28)

over all)
1z e pop I

with a similar expression holding for tB(pop) , where f is re-
placed by g . Similarly, the evaluation of 0AnB(pop) is given.

if no interaction is assumed between A and B (see [51) for
further details) as:

PAnB(pop) = 1(pop e AnB)It
W Por (P&(A(f(z)), 0B(g(z)),"wt(z))) (29)

over all)
x e pop I

The sentences

S - "Individuals have A , given individuals have B"

M (pop e A I pop 6 B) (30) i
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*and

S2 = "If individuals have B they also have A"

= "If (pop e B) then (pop E A)"
= ((pop,pop) e(B * A)) = ((pop E B) * (pop e A)) (31)

are slight variations of each other. The first is an example of
conditioning, where here conditioning is defined as in section
2.3.8. Thus the semantic evaluation I$1 it satisfies the relation

9PAfB(pop) = IIS1 & (pop e B)II

= (P&(Ils 1I, 1 B(pop)) (32)

The second is evaluated, as before, as

uis2 11 * B(pop),A(pop)) , (33)

under the usual assumptions. Then, a sentence such as "Most ships
that have long hulls also have maneuvering problems" may be
expressed in the general form

S3 = quant(S 1) or S4 = quant(S 2 ) , (34)

leading directly to the evaluations (under truth functionality
assumptions)

it II3 1 = Oquant (Its 1 1)

and

iS 411 = lquant(ItS2 ) , (35)

where

)quant l lquantil : (0,1] -& [0,1] (36)

is obtained beforehand. For example, Q1 is conveniently modeled

as a unimodal normalized function about 3/4 , while 4Q2 is a non-

decreasing function, being zero over [0,1/2] and then becoming
monotone increasing over [1/2,1] , where Q, = "about 3/4" and

Q2 = "most".

Zadeh's fuzzy cardinality approach to quantification is ob-

tained by choosing 4& = prod , wt (z) = I/card(pop) , for all z

in pop , and by choosing 40 = bndsum (i.e., for any v., ... vn  in

(0,1] , bndsum(v i .... V) = min(l,v 1+...+vn)) :

al; rafli
In poj (in popi

(37)



588 Goodman and Nguyen

Finally, it should be noted that ambiguity arises in the model-
ing of exact quantifiers. For example, "all" can be approached as
above through the function 0all =  ,. (Kr'necker delta function

for 1 ) or it can be modeled by the hedge corresponding to the

operation S (J ) for any sentence S , where here j z card(pop)
i.e.,

"all z's have A " = & ((A(f(z))) (38)
over all
z in popJ

If "softening" is really intended as in "about 5/7" for "5/7",
"almost all" for "all", "a few" or "there is", etc., then the ap-
proach given in this subsection is most appropriate. Conversely, if
an exact cardinality is specified as in "at least 2" and is meant
literally, then combinatoric considerations have to be made:

"At least two s's in the.population which have B
have also A"

Or ((z' e A)&(z" E A)j(z' e B)&(z" e B))
[ over all z',z"]
in pop, z',z" J

(39)

(f) Verb and predicatIve relations.

Three different approaches to the modeling of such relations
are presented here.

(i) The relations may be defined operationally - i.e., only
directly through a membership function. For example, the binary
relation "runs to" as in "John runs to the store" can be defined
over the domain X = Y x Z , where Y is some relevant human
population and Z is a collection of possible objects of the verb
"run to"

(ii) The relations may be defined indirectly through the use
of measurement functions, as introduced earlier. Thus "gross",
"fat", "small", depending of course on the context, can be directly

defined on the domain R+ x R after introducing the natural mea-

surement functions f - pop - R+, g : pop - R+ , representing
height in inches and weight in pounds, respectively.

(11) The relations may be analyzed further, analogous to a
dictionary definition of a relatively compound concept in terms of
more primitive ones. In turn, these relations could be used to form
constraints between the components, which would be then modeled.
The usefulness of this approach remains to be established.

EXAMPLES ILLUSTRATING SOME OF THE PRINCIPLES

The above stated principles serve as guidelines In the modeling
of natural language information. In practice, much ingenuity must
be exercised (in a sense, this is an art, based upon intuition) in
properly capturing the essence of the meaning of a given sentence. I
Such will continue to be the case until a universal parsing pro-
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cedure is discovered (see the comments earlier in the previous
subsections)!

Example 1.

Consider the compound sentence S in the Introduction:

Let: pop, = set of all days of interest , (40)

pop 2 = set of all ocean regions of interest

= (V,W. ... ) , (41)

pop 3 - set of all submarines of laterest, (42)

X = (range of possible temperatu-es in degrees)
x (range of possible wind velocities in m.p.h.)
" (range of %Is possIble representing cloudiness, etc.)
x (range of posolble no. of representing precip. inten.)
x (range of average maximal visibility in miles)R++

X X x[0,1] X R x R+ , representing weather measurements,

(43)

Y = (range of wave-chop heights)x(range of max.water vel.)

!r x , representing sea state conditions, (44)

with also domains V,W.... Q R 2  (in latitude and longitude).

Also define (errorless) measurement functions.

wem : pop 1 x poP 2 - X , weather measurement funct. (45)

ssm : pop 1 x poP2 - Y , sea state meas. function, (46)

loc : pop 3 -# VUWU-.. , geolocation meas. function. (47)

In particular, for any zE popj j = 1,2,

wem(zl,z 2) (wem1 (zl,z 2 ) .... wem 5 (zl,z 2 )) , (48)

so that wem 5 (zl,z2) is the av. max. visibility during day z, in

region z2  (z2 = V or W)

Next, define generalized set C by, for all z. ePOP

j =12,2

(c(zIzZ2 ) = O&(poor(wem(z1'z2 )), 1rel h. (ssm(zlz 2 ))) (49)
turb.

noting that *poor must be modeled and

poo

pi
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Prel h.(x) = Ohedge (4normal(x)) , all x 6 [0,1] (50)

turb.

for some properly chosen hedge1 , etc.

Define generalized set D , where for any z2 in pop 2

)D(z2) = or (liz3  was in z 211) , (51)

over all ]
z 3 In poP31

where

lz3 was in z211 = (or (4&(4z2(A)(loc(z3)'t)'.was(t)))

(all t in R )

(92)

Define generalized set E , for any zi , z3" poP 3

OE(ZisZ) = (wtd dist(loc(zp),loc(z,))) , (53)
geo ]
[match-BJ

where Pgeo arises from, typically, hypotheses testing of
[match-B]

equality of means from gausslan data, and is thus exponential in
form (see Chapters 8 and 9 for further details relating statistical
procedures with this modeling). *Z2(A)(loc(z3),t) , typically may

be obtained as the probability function evaluation corresponding to
the output of a Kalman filter, for sensor system A.

Next, define generalized set F , where for all z E pop,

z E poP2 , z , z3  pop3  G [0,1] - representing possible

correlation levels; and for all 4K [0,1] [ (0,1] , for

J = 1,2,3

*F(zlZ 2 ,z 3 ,z 3
, e 4K )P= PJ(P&(c(z1z2,K 3 (+>2 (wemsZ1,2z2))))

(4=(4&(4K (*D(z2)), 4K 2(E(zi'z3))),hedge2(2corr(e)))))

(54)

Then define generalized set G , by for all z3,z3 4 poP3 , with

z 2 = V , and for all *K J - 1,2,3, and all ,

I
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%(z.z9.,. .'z
K1 2 3

=~~ O&(FZYz, e¢IKK) (55)

[all Oaz1 (O~lVz'3 'P1d 21 3

in poP1

Define generalized set H by the conditioning procedure where
for all z ,z,e, , J = 1,2,3 , with z2  W

3zzK K ) = most(popi e F(. zi,z3,eKK2K (PK

OH(Z3,z3.,4 i 2 ' 3 2 3€mos ( P OP (0 (@FzIW'z3'Z3fe , P (zl)l
(P m o s t o r a F 3 K (P K 2 ' K 3 ) ' O w t 1

[ all z1)

in pop 1 J

(56)

Finally, define generalized set L , corresponding to inference

rule S (ezi,z3) , indicating the functional dependencies, as. for

all z E pop 3 , C l0,1]

L(O'Z ,Z3")
= .s

lS (etz3,z3)N = P [high Oiden)

IeffectJ LeffectJ

(PH(Zi Iz , , Ile 1.)) H I ,PI nt})  I (E7)
3 (improve) [low - high -1

[effect] leffectJ

with the required models assumed obtainable for the hedges
"improve", "low effect", "high effect", etc.

Example 2.

**
Consider the compound sentence S in the Introduction:
Let all notation be as in Example 1, where required:
Without loss of generality, fix time interval [a,b] compati-
ble with a fixed single day Z E pop1 . Let

pop 4 = set of all surface ships of interest. (57')

Assume that z4  is our own shp and z4  is the target one with

z4,z4  E pop 4  Fix also region T = region around the Straights

of Skagerrak. and let T R pop 2  Suppose also that

Z - (range of possible hul lengths x ...
x (range of possible side-insignia colors) x...
x (range of possible descriptions-locations of

prominent objects on ship surfact) x...
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+x. x( .... red,purple .... }x...x(....sq.box,front,....

(oval-dome,rear) ..... x... , (58)

and (errorless) measurement function Is given

des : pop4 -+ Z , a description function, (59)

where for any z4  in pop4 ,

des(z4) (desl(Z4 ),...,des3 (Z4 ) .... des1 T(Z4),.... (60)

Let "foggy" be a generalized subset of the range of the average
maximal visibility in miles, for simplicity. Define genralized set
A I where for any times t' , t", t''' and z4

A(ttt z 4 ) = Pa (z I W2 t)

holds contract
over [t',t"] J

small(t..t"), * * * (loc(z4 ),t'),posterior wem 5 (zi ,T )efoggy4

(geo

lowas t , ". ' ') 1 (61)

and in turn, define generalized set B , where for all z4 1

OB(Z4) = 'or ( A(t t",t'',z 4 )) (62)

l ve all~ t't, " ,with

text, define the generalized set C , where for all z4

#cZ)= #&#* (des3(z4 )),( posterior (wem5 (z1 T )foggy)& (

descriP3 i(maybe(observ(des3(z4 ))=purple))I

Pp osterior (wem5 (z1 
'T )efoggy)& (des1 7 (z4 ))

descriP 11(maybe(observ(des1 7(z 4 ))=(oval-domerear))

C conditional (des2 (z4 )) (63)

set of ship des3 (z4) des 2lz4)
names d I

where des2 is the naming description such as "Jones", "S.S.

Jackson", etc., and where all conditional or conditional posterior
generalized sets as above must be appropriately modeled. Then, I
finally, define the generalized set M , corresponding to informa-

tion S (z4 ) , for all z4 in pop4 , as
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**

OM(z4) = US (z4 )11 = Pa(PB(z 4 ), c(z4 )) . (64)

Modeling of inference rules such as given in Example 1 and
error distribution information as given in Example 2 can be used to
extend the usefulness of combination of evidence procedures. It is
essentially the semantic evaluation of the disjunction over all
nuisance parameter values of the conjunction of all relevant infor-
mation - in the case in Chapter 9, being the conjunction of all
relevant inference rules connecting matching levels for attributes
with correlation levels and error tables in the form of possibility
or membership functions for the attributes in posterior forms, given
observed data [80].

SUMIARY AND CONCLUSIONS

An outline has been presented for the modeling and semantic
evaluation of linguistic information. The implementation of this
depends heavily upon the appropriate modeling of the relevant com-
ponent membership functions of the generalized sets involved. (See
[51], pp. 255 - 264 for approaches to the latter problem.) Much
work remains to be done in the general area.
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Asymptotic forms for posterior estimators (8.4, 9(E), 10.2B)
Atomic formulas (2.2.2)
AtomIc-monic-projective generator (2.4.2)
Attributes (Preface, 1.1, 1.2, 9)
Axioms for a theory (2.2.2, 2.3)
Axiom of choice
Axiom of complements
Axiom of comprehension/abstraction
Axiom of domain
Axiom of extensions
Axiom of foundations (2.3.3, 2.3.4)
Axiom of infinity
Axiom of intersections
Axiom of membership
Axiom of pairs
Axiom of replacement
Axiom of unions,
etc.
Axiomitization (2.3.3)
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B

Baire a-algebra (4.2)
Basic terms (2.2.2)
Basic variables (2.2.2)
Bayes' theorem for (generalized) sets (2.3.8, 8.3)
Bayes' theorem for LST (2.3.9)
Bayes' uncertainty measure (10.2 A(III))
Belief (=credibility = upper probability) measure (3. , 4.2)
Bellman-Giertz theorem (2.3.6)
B6nabou's extension/construction of deduction categories

(2.3.2, 2.4.2)
Bochner integral for random sets (4.4)
Bochvarlan logic (2.3.3)
Boolean system (2.3.5)
Boolean truth functions/polynomials (1.1, 2.3.3, 2.3.7)
Borel attributes (2.3.9(B))
Borel o-algeL,as (4.2)
Bounded variation (BV) (2.3.9(B)(App))
Bounded (individual) variables, maps (2.2.2)
Bounds on joint probabilities (2.3.6, 2.3.9(A))

C

Canonical (= basic variable) deduction category (2.2.2, 2.3.2)
Canonical representations of t-norms, t-conorms (Preface, 2.3.6,

8.4)
Cartesian product of generalized sets (2.3.5)
Cartesian sum of generalized sets (2.3.5)
Categories (2.2.2, 2.3.2, 2.3.5, 2.4.2, 10.2B)
Central limit theorem for generalized sets (8.4), i0.2A(II))
Certainty factor (Preface, 2.5, 8.3)
Certainty level (Schefe) (7.5)
Chapin's set theory (2.3.4)
Chimpanzee-ape (vs human language controversy (2.1)
Choice function (family) (5.2, 6)
Choquet capacity (1.2, 4.1, 5.3, 8.3)
Choquet operators (3.2)
Choquet-type measures (3.2)
Choquet's theorem (3.4)
Class abstraction (2.2.2, 2.3.4)
Classical two-valued logic (L2) (Preface, 2.3.3, 2.3.6)

Co-Copula (Preface, 2.3.6)
Cognition, cognitive rationality (Preface, 1.1, 2.1, 2.2.1, 8.1,

10.2A(I))
Coindicator function (2.3.5)
Combination of evidence (2.3.2, 8.3, 9, 10.2B)
Combination of generalized set operators (comb(-)) (2.3.5)
Commonality measure (3.2)
Commutative theory (Manes) (7.2)
Commutative-multiple domain lifting operator or extension (7.2)
Compact classes (4.2)
Compactness property (2.3.3)
Completely monotone (2.3.6)
Complementation (or negation) of generalized sets (Preface, 1.1,

2.2.2, 2.3.5, 2.3.6)
Completeness (Manes) (7.2)
Completeness for logic (2.3 3)
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Composition of arrows (2.4.2)
Compound (or eliminative) generalized set operators (2.2.2, 2.3.8)
Conditional possibility distribution (3.3)
nonditioning/conditional possibilities (2.3.8, 2.6, 3.3, 1O(App))
Conditioning in LSL (2.3.9)
Concepts (8.1, 10.2A(I))
Conclusion of a theorem (2.2.2)
Confidence set estimators (5.5, 8.2)
Conjunution (or t-norm) (Preface, 1.1, 2.2.2, 2.3.6, 2.6, 10.2b)
Consequence of an inference rule (9(C), (D), (E))
Consequence (2.3.3)
Consistency prufiles, (Black) (1.2)
Consistent theory (Manes) (7.2)
Consistent (2.3.3)
Containment class (see superset coverages)
Continuum hypothesis (2.3.4)
Contradiction (2.3.3)
Controlled (or bound) (individual) variables (2.2.2)
Controversies, criticisms (10.2A)
Contravariant functors (2.4.2)
Copulas (Preface, 2.3.6, 5.2, 6)
Co-product (2.4.2)
Core (2.2.2)
Core (Watanabe) (1O.2.A(II))
Correlation (or data association) problem (9)
Covariant (= ordinary) functors (2.4.2)
Coverage function of a random set (4.2, 10.2B)
Credibility measures (3.2)
Crisp (-ordinary) topos (SET, Set) (Preface, 2.4.1, 2.4.2)
Crisp points (Manes) (7.2)
Curry-like paradox (2.3.4, 2.3.5)

D

Data association problem (9)
Decision theory (8.2, 8.5, 10.2B)
Deduct (= theorem) (2.2.2)
Deduction category (2.2.2, 2.3.2, 2.4.2)
Deduction (logical axiom) (2.3.4)
Deduction in fuzzy logic (2.5)
Deducton, deductive implication (2.2.2)
Deductively complete (2.3.3)
Deductively sound (2.3.3)
Deep structures (2.2.1)
Degree of surprise (Schackle) (1.2)
DeMorgan system (of t-norms, t-conorms, etc.) (2.3.6, 3.2. 6, 7.4)
Dempster's theorem (4.2)
Dempster-Shafer belief theory (1.2)
Dempster-Shaf-- combination of evidence (4.2, 8.3)
Density of z set (2.3.5)
Disbelief measure (3.2)
Disjunction (or t-conorm) (Preface, 1.1, 2.2.2, 2.3.6, 2.6, 10.2B)
2ispersions (Y: generalized or fuzzy set membership functions)

(Preface, 1.1, 2.3.5, 10.2B)
Dispersion spaces (2.3.5, 2.3.81
Dispersive test (8.5)
Distinguished symbols (2.2.2)
Distinguished objects, arrows, relations (2.3.2)
Distribution functions and pseudoiaverses (? 3.6(App))
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Distribution map (Manes) (7.2)
Distribution of implication (logical axiom) (2.3.4)
Distribution of universal quantification (logical axiom) (2.3.4)
Distributivity (2.2.2, 2.3.6, 7.2)
Domain and domain/range lifting operators or extensions (7.2)
Double implication operator (2.3.8)
Doubt (= commonality) measures (3.2, 4.2, 5.3)

R

Empirical modeling of membership functions and operators
(1.1, 2.3.5, 2.6, 7.4, 7.5, 9)

Entropy (3.1, 7.3)
Epi(morphism) (2.4.2)
Equalizer (2.4.2)
Equality map (Manes) (7.2)
Equality or equivalence symbol, map (2.2.2, .2.4.2)
Equivalence (logical axiom) (2.3.4)
Error distributions or dispersions (1.1, 9(B),(D),(E))
Error tables (9(B),(D),(E))
Evaluations (= semantic evaluations) (2.3.2)
Evidence (3.3)
Examples of semantic evaluations (2.6, 10 (App))
Exchangable t-norms, t-conorms (2.3.6, 6)
Existence relation, symbol (2.2.2)
Existential instantiation (2.3.4)
Existential qualification (2)
Expanded syntax (2.2.2)
Expectations of dispersions (see measures of central tendency)
Expected n-volume of random sets (4.4, 5.5)
Experiments (Preface)
Expert system (Preface, 9)
Exponential object (2.4.2)
Exponential symbol, relation (2.2.2)
Expressions (2.2.2)
Extension of Boolean logical connectors (2.3.7)
Extension map (Manes) (7.2)
Extensions of functions (1.1, 2.3.7)
Extension principle (2.3.7)
External modeling (1.1)
Eytan's category of fuzzy sets (Fuz(H)) (2.3.5, 2.4.1, 2.4.2,

10.2B)
Eytan's modified category (Fuz (H)) (2.3.5, 2.4.1, 2.4.2)

F

Faithful arrows between deduction categories (2.3.3)
Faithful functor (2.4.2)
Faithful theory (Manes) (7.2)
FamJlies of choice functions (6)
Families of truth functions (2.3.6)
Figures-of-merit of dispersions (see measures of central tendency)
Filter class (see subset coverages)
First-level syntax (2.2.2)
Fixed points (10.2.B)
Flou class (5.2)
Formalism (2.3.1)
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Formal language (2.2.1, 2.2.2, 10.2B)
Formal linguistics (syntactic transforms) (1.2)
Formal topoi (2.2.2, 2.3.2, 2.4.2)
Foundations class (Foun) (2.2.2. 2.4.2)
Fractals (2.3.5)
Frankian or Frank's family (Preface, 2.3.6)
Frank's theorem (2.3.6)
Fr6chet bounds (extended by Hailperin) (2.3.9)
Free (individual) variabLes (2.2.2)
Frill (Watanabe) (10.2 a (II))
Full subcategory (2.4.2)
Functional extensions (1.1, 2.3.7)
Function symbols (2.2.2)
Functor (= covarlant functor) (2.4, 10.2B)
Fuzzy cardinality (1.1, 2.3.8, 2.6)
Fuzzy logic (Zadeh) (2.5)
Fuzzy measures (Klement, Sugeno) (3.3)
Fuzzy partitionings (6)
Fuzzy probability measures, Fuzzy random variables (3.3, 7.1)
Fuzzy sampling (8.4)
Fuzzy (= generalized) sets (throughout text)
Fuzzy set category (Fuz(H)) (see Eytan)
Fuzzy set membership function (= dispersion)
Fuzzy set systems (1.2, 6)

G

Gaines' uncertainty logic (7.4)
General compositions of binary maps (2.4.2)
General distribution function (g. d. f.) (2.3.9(B) (App))

0General (fuzzy) set system (2.3.5, 2.3.6)
General inferential problem (Preface, 8)
General logical systems (throughout text, especially 2.3.5)
Generalized comprehenslon/abstraction (2.3.4)
Generalized decision theory (8.2)
Generalized laws of large numbers (8.4)
Generalized (= fuzzy sets) (throughout text)
Generalized set operations (2.3.4, 2.3.5, 2.4.2, 6, 10.1)
Generators for categories (2.4.2)
Generators (via cananical forms) for t-norms, t-conorms (Preface,

2.3.6)
Gentzen sequents (2.2.2)
Giles' argument approach (8.5)
Giles' possibility function (8.5)
Gilmore's partial sets (1.2)
GWdel-Intultlonistic logic (2.3.3)
Godelian-like sentence (10.2B)
Goguen's category for fuzzy sets (Gog(H)) (2.3.5, 2.4.1)
Grounded (2.3.9(B) (App))
Grothendleck topos (2.4.2)

H

Hay's logical axioms (2.3.4)
Heisenberg uncertainty principle (1.2, 2.2.2, 10.2B)
Heyting algebra (2.3.3)
Higgs' topos (Higg(H)) (2.3.5, 2.4.1, 10.2B)
History of uncertainty modeling (1.2)
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Homomorphisms In Manes' sense (7.2)
Humor and self-referencing statements (10.2B)
Hybrid logical system (Preface, 2.3.5)
Hypothesis (= antecedent) of a theorem (2.2.2, 9 (C))
Hypotheses testing (5.5, 9 (C), 10.2B)
Hypotheses tests and one point coverages of random sets (5.5)

I

Ideal sets (Aumann & Shapley) (3.3)
Idempotent (2.2.2, 2.3.6, 10.2B)
Indentification of fuzzy set systems (6)
Identity arrow (2.4.2)
Imbedding (2.3.7, 2.4.1)
Imbedding map (Manes) (7.2)
Implication operaation (2.3.3, 2.3.6, 2.3.8)
Incidence function, class (3, 4.2, 4.3)
Inconsistent (2.3.3, 2.3.5)
Incredibility measure (3.2)
Independence (2.3.8, 2.3.9)
Independence for LSL (2.3, 9(B))
Independence map (Manes) (7.2)
Individual constants, terms, variables (2.2.2)
Individual variable assignment (2.3.2)
Induced measures (2.3.8)
Inductive probabilities (Cohen) (1.2)
Inference procedures (5.5)
Inference rules (1.1, 2.3.4, 9(C),(D),(E)}
Inferential problem (Preface, 8)
Infinite copula (Preface, 2.3.6, 2.3.9, 5.2)
Information theory, measures (3.1)
Initial objects (2.4.2)
Intensifiers/extensifiers (2.3.8, 7.5, 9(C))
Interactions (2.3.8)
Internal modeling (1.1)
Intersection of generalized sets (2.3.4, 2.3.5, 2.4.2)
Intultionistic existence (2.4.2)
Intuitionistic implication (2.3.3)
Intuitionistic logic (2.3.3, 2.4)
Intuitionistic negation (2.3.3)
Intuitionistic Krdnecker delta (2.3.3, 2.4.2)
Intuitionistic equality (2.3.3, 2.4.2)
Intuitionistic Zermelo-Fraenkel set theory (2.3.4)
Involution (2.3.6)
Isomorphic-like (= weak-homomorphic) relations (1.2, 6)
Isomorphisms in categories (2.4.2)

J

Joint admissibiliity of tests (5.5)
Joint random sets (4.2)

K

Kleisli category (used by Manes) (7.2)
Knowledge-based systems (Preface, 2.3.5, 8, 9, 10.2B)
Knowledge representation, utilization, acquisition (8.1)
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L

Law of excluded middle (2.2.2, 2.3.3, 5.2, 7.3, 7.4, 7.5, 10.2A)
Law of large numbers (8A, 10.2.A(II))
Lebesgue-Stielties logic (LSL) (2.3.9(B))
Level sets (5.2)
Liar's paradox (10.2B)
Lifting operators (Manes, etc.) (2.3.7, 7.2)
Linguistic variable mapping (Ling) (2.3.8)
Linguistic variables (2.3.8)
Local logic (2.3.5)
Locally Archimedean (2.3.6)
Logical connectives (Loc) (Preface, 1.1, 2.2.2, 2.4.2)
Logical constants (2.2.2)
Logical equivalence (in special sense) (2.4.2)
Logical (or material) implication (2.3.3)
Logical axioms (2.3.4)
Logically complete (2.3.3)
Logically sound (2.3.3)
Logic(s) (2.2.2, 2.3.2, 2.3.3, 10.2B)
Logos (2.4.2)
Lbwenheim-Skolem property (2.3.3)
Lower probabilities (1.2, 3.3, 4.2, 8.4)
Lukasiewicz logics (L .. n=1,2..., R 1 (2.3.3, 10.2A (I)

L-valued logics (2.3.5)
A-additive , A-fuzzy measures (Sugeno) (3.3)

N

Manes' theory of uncertainty ("fuzzy theories") (Preface, 7.2,
10.2B)

Many-sorted formal language (2.2.2)
Marginal measures for LSL (2.3.9(B))
Marginal random sets (4.2, 6)
Markoff-Kernel (Klement et al.) (3.3)
Matching tables (9 (C), (D), (E))
Material Implication (2.3.3)
Matheron's theorem (4.3, 5.3)
MaA bounded sum (maxsum) (t-conorm) (2.3.6)
Max(imum) (t-conorm operation) (2.3.6, 8.4)
Maximal (or cross) entropy solution to one point coverage problem

(1.1, 3.1, 5.4)
Maydole-Hay set theory (2.3.4)
Measure of central tendency of a dispersion (2.3.6, 2.3.9(B),

8.4 , 9(E), 10.2B)
Membership function (Preface, 2.3.5, 2.4.2, 6, 7.5, 9, 10)
Membership relation, symbol (2.2.2, 2.3.2, 2.4.2)
Meta-level of analysis (Prologue)
Min bounded sum (minsum) (t-norm) (2.3.6)
Min(imum) (t-norm operation) (2.3.6, 8.4)
Minimal entropy solution to one point coverage problem (5.4)
Modal logic (2.3.3)
Modal operations (2.6, I0(App))
Model (2.3.2, 2.3.3)
Model-consistent (2.3.3)
Model-inconsistent (2.3.3)
Modeling dispersions (membership functions) (1.1, 2.3.5, 2.6,

7.5, 9)
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Modular (see Frankian)
Modus ponens (logical inference rule) (2.3.3)
Modus tollens (logical axiom) (2.3.4)
Moments of dispersions (8(A), 9(E), 10.2B)
Monad (used by Manes) (7.2)
Mono(morphism) (2.4.2)
Monotone measures (3.2)
Monotone Choquet capacities (3.2)
Morphisms (see arrows)
Moyinihan's theorem (2.3.6, 2.9(B)(App))
Multiple point coverage function (4.2, 4.3, 10.2B)
Multi-valued logic (1.2, 2.3.4)
Multi-valued mapping and integration/expectation of random sets

(4.4)
Mutually distributive (2.3.6)

N

Naive set theory (2.3.4)
N-ary relations (2.6, 10(App))
Natural language and its modeling (1.1, 1.2, 2.1, 2.6, 1O.2A(I),

1O(App)
Natural logic (2.2.1)
Natural topologies on ordinary membership function and set classes

(4.2)
Natural transform between functors (2.4.2)
Negation or complement operation (Preface, 1.1, 2.2.2, 2.3.6)
Negation consistency (2.3.3)
Negoita-Ralescu representation theorem (5.2)
Nested random sets (5.2, 6, 9(B))
n-copula (See Copula)
n-homomorphism/extension (Manes) (7.2)
Noise-free theory (Manes) (7.2)
Nondecreasing binary function (2.2.2, 2.3.6, 2.3.9(B)(App))
Non-interaction (2.3.8, 2.3.9(B))
Nonstandard analysis (2.3.3)
Non-truth functional system (Preface, 2.3.3)
Normable functions (2.3.9(B), 5.2, 7.2)
Novak's set theory (2.3.4)
Nuisance parmeterr (8.3, 9(D),(E),(F))

0

Objects (of categories) (2.2.2, 2.4.2)
Observed data (1.1, 9)
One-point coverage (filter) class (4.2, 5.2, 9(B))
One-point coverage problem (1.2, 5.2)
Open wff (2.2.2)
Ordinal sums of t-norms, t-conorms (2.3.6)
Ordinary set topos (SET, Set) (2.4.1, 2.4.2)

P

PACT algorithm (9)
Parsing principle (2.1, 2.2.1, 2.3.4, 10(App))
Partial sets (Gilmore) (1.2)
Phrase structure (2.2.1)

.=. nnmu u nnmm Imj SImn
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Platonism (2.3.1)
Plausibility (= upper probability) measure (3.2, 3.3, 4.2)
Poincar6 (probabilities of unions of events in terms of

intersections and vice-versa) (3, 4)
Positive increment monotone (PM) (2.3.9(B) (App))
Possibility distribution, measures (3.3)
Possibilities (Preface, 1.1, 5.2, 9(B))
Posterior generalized (fuzzy) set estimators (8.4)
Predicate (= relation) symbols, functions (2.2.2, 2.3.2)
Primitive random set (4.2)
Principle of maximum (cross) entropy (3.3)
Probability logic (PL) (2.3.3, 2.3.5, 2.3.9(A), 3.1, 7.4)
Probabilistic reasoning (2.5)
Probabilistic system (2.3.5)
Prob(ability) sum (probsum) (t-conorm) (2.3.6)
Process (Preface)
Prod(uct) (t-norm operation) (Preface, 2.3.6)
Products holding for a category (2.4.2)
Projections (in different senses) (2.3.8, 2.4.2, 2.6, 3.2, 3.3,

4.2, 7.3, 8.3, 9(E))
Projective object (2.4.2)
Property systems (Allen) (2.3.4)
Propos4tion (ManeT) (7.2)
Propositional completeness (Manes) (7.2)
Prototype (concept) (8.1, i0.2A(I))
PRUF (Zadeh) (Preface, 2.1, 2.3, 2.5, 2.6, 8, 9)
Pseudo-complement (2.3.3)
Pseudo-Inverse of a c. d. f. (2.3.6(App))
Pseudo-topos (= logos) (2.4.2)
Pullbacks (2.4.2)

Q

Quantifications (1.1, 2.2.2., 2.3.3, 2.3.8, 2.3.9(B), 2.6, 10(App))
Quantifications for LSL (2.3.9(B))
"Quasi"-logical axiom forms:

Quasi-universal instantlation,
Quasi-existential Instantiation,... (2.3.4)

Quotients (2.4.2)
Quotient theories (Manes) (7.2)

R

Rao-Crambr-Fisher precision or information bounC (10.2 B)
Random intervals (5.2)
Randomized tests (5.5)
Random membership function (5.1)
Random partitioning (6)
Random (sub) set operations (6)
Random (sub) sets (1.2, 3.2, 3.3, 4, 5, 6, 9(B), 10.2 B)
Range of a random set (4.2)
Reflexive statements (see self-referencing statements)
Relation symbols, functions (2.2.2, 2.3.2, 2.4.2)
Robbins' formula (4.4, 5.5)
Rules for a theory (2.2.2)

I
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Satisfaction (2.3.3)
Schackle's degree of surprise (1.2)
Schefe's agreement probabilities (7.5)
Scores, score functions (Lindley, etc.) (10.2A(III))
Second-level syntax (2.2.2)
Second-order probabilities (1.2)
Self-referencing statements (10.2B)
Semantic deduction (2.5)
Semantical domain (2.3.2)
Semantic evaluation (1.2, 2.3.2, 2.3.7, 10.1, 10.2B)
Semi-distributive t-norms, t-conorms (2.3.6, 3.2, 6)
Semi-truth functional systems (2.3.9)
Semiotics (2.1, 2.2.1)
Sentences (= completely bound wff's) (2.3)
Sequents (Gentzen) (2.2.2, 2.3.3, 2.4.2)
Set operations (2.3.5)
Set theory (general) (2.2.2, 2.3.2, 2.3.4, 2.4.2)
Sheaves (2.4.2)
Signature function, symbol (2.2.2, 2.4.2)
Signed measures (2.3.9(B) (App))
Simultaneously weak homomorphisms (6)
Sklar's theorem (Preface, 2.3.6)
Sorts (2.2.2)
Soundness and completeness (deductive) properties for semantic

evaluations In deduction categories (2.3.3)
Space law (4.3)
Span (2.2.2)
States (Preface, 2.3.5)
Steady state of a feedback-loop system (10.2B)
Strict Archimedean (2.3.6, 2.3.8, 2.3.9(B))
Strings of wffs (2.2.1, 2.2.2. 2.3.3, 2.6)
Strong bounded variation (SBV) (2.3.9(B)(App))
Subobject operator (2.4.2)
Subobject classifier for a topos (2.4.2)
Subconstants (2.4.2)
Subjective error tables (9(B),(C),(D),(E))
Subjective inference rules (9(B),(C),(D), (E))
Subjective probabilities and possibilities (7.3, 7.5, 8.5)
Subset coverage function, class (4.2)
Subset relations for general sets (2.3.8, 2.4)
Subset topologies and a-algebras (4.2(App))
Substitution symbol, function (2.2.2, 2.3.2, 2.3.5, 2.4.2)
Subtheory map (Manes) (7.2)
Summary of topics discussed (10.1)
Superset coverage function, class (4.2)
Symmetry (2.2.2, 2.3.6)
Syntax (2.2.2)
Systems (Preface)

T

Tautology (2.3.3)
Tautological equivalence (2.3.3)
t-conorm or disjunction (see disjunction)
Temporal operators (2.6, 10(App))
Terminal objects (2.4.2)
Terms (basic and individual) (2.2.2)
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Textured sets (Smith) (2.3.4)
Theorems (2.2.2)
Theory (for a formal language) (2.2.2)
Theory map (Manes) (7.2)
t-norm or conjunction (see conjunction)
Topos, topoi (1.2, 2.3.2, 2.4, 10.2B)
Total (individual) variable map (2.2.2)
Total variation (2.3.9(B)(App))
t-possibility measure (3.3)
Tracking and correlation (1.1, 9)
Transformational (grammar) rules (2.2.1)
Transformation of dispersions (2.3.8)
Transitivity (full, partial) (2.4.2)
Truth functions (2.3.6)
Truth functional systems (Preface, 1.1, 2.3.3, 7.4)
Truth functional completeness (2.3.3)
Truth-maps (2.2.2)
Truth space (2.3.3)
Types (2.2.2)

U

Ultrafilter (see subset coverages)
Uncertainty logic (Gaines) (7.4)
Uncertainty measures (1.2, 2.3.2, 3, 4, 5)
Uncertainty measures as coverage functions (4.2)
Uncertainty models (Preface, 1.1, 2.3.5, 8, 9)
Uncertainty of systems (Preface)
Union of generalized sets (2.3.4, 2.3.5, 2.4.2)
Universal instantlation (2.3.4)
Universal quantification (2.2.2, 2.3.2, 2.3.3, 2.3.4, 2.6,

1O(App))
Universes of discourse (1.1, 2.2.2, 2.3.2)
Upper probabilities (1.2, 3.3, 4.2, 8.4)

V

Vagueness (Manes) (7.2)
Validity (2.3.3)
Valuation (see Frank)
Von Neumann-Gddel-Bernays set theory (2.3.4)

N

Watanabe's theories of uncertainty (7.3, lO.2A(II))
Weakened Zermelo-Fraenkel set theory (zer, ser., etc.) (2.4.2)

Weak-isomorphisms, -homomorphisms (5.2, 6)
Weak satisfaction/validity (2.3.3)

*
Weak -completion of the class of ordinary membership functions

(2.3.6)
Welghted-sum operations (6)
Weidner's set theory (2.3.4)
Weights of evidence (8.3, 8.5)
Weights of Importance (1.1)
Well-formed formulas, terms, Individual variables, (Wff, Wfter,

Wfv....) (2.2.2)
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Well-pointed topos (2.4.2)
Whorf-Sapir hypothesis (1.2, 2.1)

y

Yager's family of t-norms, t-conorms (2.3.6)

Z

Zadeh's fuzzy set system (Preface, 2.3.5, and various parts of the
text)

Zermelo-Fraenkel set theory (ZF) (2.3.4)
Zero-one stochastic process (4.2, 5.1, 6)



LIST OF SYMBOLS

The following list of symbols contains essentially only the
most important ones.

$ynabol Explanation

L Formal language

syn Syntax part of L

Th(L),ThK(W) Additional theory for L

Symb(L) Alphabet or collection of symbols.
, P , I Formal deduction symbols.

Core(L) Category of types of things.
Ob(L) Collection of universes of discourse
Ar(L),Ar a,(L) Collection of arrows between universes of

discourse.
Rel(L) Collection of relations upon universes of

discourse.
Cat(L) Collection of category theory function

symbols.
DeCat(L) Collection of deduction category theory

function symbols
Foun(L) Collection of function symbols representing

set-theory concepts.
Ex Existence map.
Loc(L) Collection of logical connectors
Quan(L) Collection of quantifiers.
Th syn(L) Theory of syntax.

De(Th(L syn)) Collection of deducts or theorems.

Var(L) Collection of basic variables.
Wfv(L) Collection of individual variables.
Wft(L) Collection of individual terms.

Rel(Var(L)) Collection of relation symbols.
Wfat(L) Collection of atomic well-formed formulas.
r[f] Substitution of term f Into relation r
Wff(L) Collection of well-formed formulas.
Wfter(L) Co!lection of basic well-formed terms.
Wfex(L) Collection of well-formed expressions.
FuncSymb(L) = Arr(L) Collection of function symbols of Core(L)
Typ(L) = Obj(L) Collection of object classes of Core (L)
Sort(L) Collection of basic types or kinds of

things.
x , (Cartesian) product map.
a ,:.3 Exponentiation, subobject classifier.
Span(A;Q) The span of A by operator(s) Q
<fg> Function product.

Signature map.
(Cartesian) sum map.
Equality map.

637
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_. x Natural transform (between functors).
E Membership map.
e nClass of all n-copulas.

co-C Class of all n-co-copulas.

Proj, proj. proj(ixi),pG Projection map.

o Composition map.
T , TH  H  Truth (only) map.

10H ' F 0 H  False (only) map.

not , nt , - Negation map.
& Conjunction map.
or Disjunction map.

Implication map.
Id, id. Identity relation.
Loc () Collection of n-ary logical connectors.

min , A A H Minimum

max , V , vH Maximum

CDouble implication.
Seq,(L), Ser(L) Sequents class.

Predsym(L) Collection of predicate symbols.
Term(L) Collection of terms.
Var(Ar(L)) Collection of basic variables of Ar(L)
Ax(L) Collection of axioms.
Rul(L) Collection of rules.
SET , Set Category of ordinary sets.
Cons(L) Collection of basic constants.
Form(L) Collectlci of quantified formulas.
Atom(L) Collection of atomic formulas.
De(ThK(L)) Class of all deducts of ThK(L)

Mo , So Most-, some-operators.
V 3 Universal, existential operators.
Indterm(L) Collection of individual terms.
Indvar(L) Collection of individual variables.
Indconst(L) Collection of individual constants.
ThI,syn(L) First-level syntax theory of L

Thiisyn(L) Second-level syntax theory of L

X(L) Functor: Var(L) -* Preord.
Preord , Preord Category of preordered sets.

Sent(L) Collection of fo:.,.. sentences of L
TV Total variable map.
FV Free variable map.
BnV Bound variable map.
Open(L) Collection of open expressions of L
(CS) Deduction category
i.n , 11.11 Semantic evaluation map.

S Source (or domain) map.
B Codomaln map.

R IIsyn, 3 rd deduction rule for level II syntax.

Individual variable assignment map.

x() ,YI Individual variables.

H Exponential functor.
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Sub Subobject functor.
0 Tautology equivalence.
, (Z L 7) Logical (or material) implication.

Val(Z 11.11) Sequents valid for 11.11
{'.''} Class abstraction map (generalizing

standard set notation).
Mod(Th(L),L) Set of mode3s of Th(L) for logic L
L n I L Lukasiewicz logics.

(n , ) n-iterated implication.
Bn Bochvarlan logics.

G n  C-del-Intuitionistic logic.

8 , ax(X) Krdnecker delta symbol.

PL Probability logic.
LSL Lebesgue-Stieltjes logic.
GC Axiom of generalized comprehension.
Z7 , (Z7) Set theory axiom # 7.
NST Naive set theory
MH Maydole-Hay set theory.
NGB Von Neumann-Gddel-Bernays set theory.
ZF Zermelo-Fraenkel set theory.
IZF Intuitionistic-Zermelo-Fraenkel set theory.
Ch Chapin's set theory
Wei Weidner's set theory.
Nov Novak's set theory
P , p Membership map/possibillty functor.
OA Membership function of attribute A

Ont Membership function of not (negation).

(Pa Membership function of and (t-norm).

Por Membership function of or (t-conorm).

00 Membership function of implication.

0(Z) Class of all ordinal sum systems over I

Oor(tor , p , K) t-conorm part of ordinal sum system

generated by tor ' P , K

06( QEp , K) t-norm part of ordinal sum system

generated by t& , p , K

( p , K) Ordinal sum system generated by I , p , K

(00 Membership function of operation

Owtdsum Membership function of weighted sum

operator.

(pth t-norm (Yager)

'Oor,(p) p t-conorm (Yager)

(Pa's )th
sth t-norm (Frank)

Yager's family of t-norms and t-conorms.
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9(p) 1 at the p-level.

L Affine operator ordinal sum.

9 ,e Class of all DeMorgan fuzzy set systems.
Y !e Class of all semi-distributive t-norms,

t-conorms.
Ar Class of all Archimedean t-norms,

t-conorms.

*-(p), 0- (P) Ap, A 1 , the attributes corresponding to
dispersions (or function) p ,

1(q) The unity map 1 over Rq

if X.. .xf Measure induced by applying (t-norm) to

marginal functions fl .... n

f, f, *, , #(f), n(f) Extensions of f .

<x E A>, (x E A) Wff "x Is In A" or "x has attribute A"
A A B Incidence between A and B (A n B 0)

A -  n-intensification of A.

A n-stretching/extensification of A
0 A Initial object.

TB Terminal object.

Sh Sheaves operator
9op Opposite operator for g (category theory).

Zero , Zer Weaker ZF set theory.

wpt Well-pointed topoi theory.
wtt, wtr, wttr Well-pointed/partial transitive theory.

H Partial order on Heyting algebra H .

gX a Pull-back relative to 7 and a through
g~f

g and f

, Adjoints of g
Pa Terminal arrow map.

Bool n(H), %n Collection of H-valued Boolean functions.

Higg(H), HIGG(H) Higg's topos
Fuz(H) , Fuz , Gog(H), GOG(H) Categories representing fuzzy

set theory.
M(X) Collection of fuzzy or generalized subsets

of X .
51(X) Set of dispersions of X ; natural

X
topology on (0,1)

-(X) , 5(X) Power class of X - collection of all
ordinary subsets of X

I(X) Collection of all finite subsets of X
H ,H0 Heytlng algebra (usually).
tt Lifting operators.

8 q Borel a-algebra of

L() Equivalence classes of f such that lflq

is m-integrable.

nnmu m nmmm nnnnmmm m m nmm II I II I
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IS n, Bool nClass of Boolean polynomials (classical).

L91 Fuzzy set exterior %T

comb(-) Combinatin operator.
C 1 -4 1 Complementation symbols.
Pr, p Probability operators.
BV Bounded variation.
5EV -1trong bounded variation.
PM Positive increment monotone.
ND Non-decreasIng.
g.d.f. Generalized distribution function.

5 Class of all step functions over R

F _______ measurable functions _______

EV __ _ __ _ _ BV __ _ _ _ _ _ _ _ _ _ _ _ _ _ _

sBV _______ SBV ________________

___ ___ __ c. d. f. __ _ _ _ _ _ _ _ _ _ _ _

FM ______ p. M. ___ _________

SPM ______ p. m. and SBV _________

Ov ______ BV functions.
SEV _______ BV lunctions.

C __ _ __ _ g. d. f. _ _ _ _ _ _ _ _ _ _ _

C n______ n io.-product of SEV

Q(V) ______ discrete probability functions over V.

qq

Tr q Ciass of all probability measures over R

PU , Pf Measure (signed, pr~babills'.ic, etc.)

%'r qCl...ss of all measu:-es corresponding to OVq
Yrq qB

i~~v Class of all elements c~f %, with values in (0,1].

viv Y16q
q q

C% Yq (P + C P J T c -.onstant)

C% q (yi + c y e Ysr q c constant)
C (n Class of all measures corresponding to Cn

OYC C-msarginal measure of/i '

DLSL I Class of all strings (wff's) generated by il'
for fuzzy set system I

LSI.A part of LSL :DLSL I extended to Borel attributes.

J(Xty) q-dimensional interval determined by X, y C 4

J(X,y) J(X A Y X V Y)
A q q-difte. 'nce.

Vr(f,K,O) Variation of f over K w..-.t. pr~tition a
Vr(f.K) Total variation of f over K~
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r(f) Total variation of f

Y(p f,Rq ) Class of al pf-measurable subsets of Rq

(pfR q ) pf-measurable functions on R

L(Pf,B) Jf-integrable functions over B

(Y(c,%),Sub) Benabou extension of (C,%)
Prodsum Probability sum t-conorm.
Maxsum, maxbndsum Maximum sum t-norm max(O, x + y - 1)
bndsum, minbndsum, minsum Bounded sum t-norm : min(l, x + y)
s r Frank's family of t-norms and t-conorms.
9s 5rs (1 - (-), * s ' Por,s )

Ent(S) Entropy of random set S
Poss, poss. Possibility measure.
e (xi Class of all subsets of space containing x

C B,j(X) Filter class on B restricted to sets of

cardinality j
0Null set.
D(f), Diag(f) Diagonal part of f
& Diagonal embedding operator.

rng(S) Range of random set S
Lev(A), rA  Level map (a-cut map).

S(A) A random set one point equivalent to A
Su(A), T(A), S&(A), S or(A)

Special random sets one point equivalent to A
fs One point coverage function for S

One point coverage relation between attributes and
random sets.

S)(f) Random sets m-point coverage equivalent to f

U Disjoint union.
sr 0 Truth functional system (neg, min, max)

1 1 Truth functional system (neg, prod, probsum)

90 Truth functional system (neg, max sum, bndsum)
11; Truth functional system (neg, prod, bndsum)
dis defined to be.
w.l.o.g. without loss of generality.
w.r.t. with respect to.
0x,a  Collection of ordinary membership functions f with

f(x ) = aj - (0,1), j - 1,...,n , say.

C B Filter class of sets over B

% B Containment class of sets over B
CB, D  incidence classes.

Prod, prod. Product t-norm.
e. Intuit4onistic Kr6necker delta for r

0Deduction of ? from 0 . (2.5)

Card. Czrdinality of
13 Approximate 13, etc.
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v (n p2)
Choquet operators.

Pr , Pr. Upper (lower) probability.

gA A-fuzzy (or additive) measure.

M(II') C I n TCI *
us I(S) Measure corresponding to random set S

S) (S) Filter class or subset coverage function induced by(s)(O) (s

random set S .
p Containment class or superset coverage function

induced by random set S
/ Incidence function induced by random set S(5) (2)

S Random set corresponding to doubt measure p

Bel Belief measure.
S Joint collection of random sets.

V Zero-one stochastic process.

BTr Tranpose of matrix B
Voln 'pn n-dimensional Lebesgue measure.
An Collection of generalized sets (using tilde).

w-hom Weak-homomorphism.
L , U Lower, upper probability bounds.
TManes theory (f,e,#)

L(x,r) Loss function (parameter x, decision r).
CF(H,E) Certainty factor for hypothesis H and evidence E.
COW Conditional posterior posibility function for

parameter(s) t given data x "

'univ ' Diag Special membership functions (Ch. 8).

j) Z) Observed, theoretcal data vectors correspondingto

attribute Ak  for track history j . (Ch. 9).

P(. I..) Error table for attribute Ak (Ch. 9).

Rt tth -inference rule (Ch. 9)

M k  Matching table (used in antecedent of inference

rule) for Ak.

Pf Lindley's transform for score function f

s 1 Indicates a sentence.

pop PA(pop) Population, membership for population.


